Single Environment (single + environment)

Distribution by Scientific Domains


Selected Abstracts


Parallel programming on a high-performance application-runtime

CONCURRENCY AND COMPUTATION: PRACTICE & EXPERIENCE, Issue 18 2008
Wojtek James Goscinski
Abstract High-performance application development remains challenging, particularly for scientists making the transition to a heterogeneous grid environment. In general areas of computing, virtual environments such as Java and .Net have proved to be successful in fostering application development, allowing users to target and compile to a single environment, rather than a range of platforms, instruction sets and libraries. However, existing runtime environments are focused on business and desktop computing and they do not support the necessary high-performance computing (HPC) abstractions required by e-Scientists. Our work is focused on developing an application-runtime that can support these services natively. The result is a new approach to the development of an application-runtime for HPC: the Motor system has been developed by integrating a high-performance communication library directly within a virtual machine. The Motor message passing library is integrated alongside and in cooperation with other runtime libraries and services while retaining a strong message passing performance. As a result, the application developer is provided with a common environment for HPC application development. This environment supports both procedural languages, such as C, and modern object-oriented languages, such as C#. This paper describes the unique Motor architecture, presents its implementation and demonstrates its performance and use. Copyright © 2008 John Wiley & Sons, Ltd. [source]


CROSS-GENERATIONAL ENVIRONMENTAL EFFECTS AND THE EVOLUTION OF OFFSPRING SIZE IN THE TRINIDADIAN GUPPY POECILIA RETICULATA

EVOLUTION, Issue 2 2006
Farrah Bashey
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low- and high-food mothers in either low- or high-food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low-food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low-resource environment or in an environment that selects for lower reproductive effort [source]


QUANTITATIVE GENETICS OF SEXUAL PLASTICITY: THE ENVIRONMENTAL THRESHOLD MODEL AND GENOTYPE-BY-ENVIRONMENT INTERACTION FOR PHALLUS DEVELOPMENT IN THE SNAIL BULINUS TRUNCATUS

EVOLUTION, Issue 5 2000
Marie-France Ostrowski
Abstract Sexual polymorphisms are model systems for analyzing the evolution of reproductive strategies. However, their plasticity and other binary traits have rarely been studied, with respect to environmental variables. A possible reason is that, although threshold models offer an adequate quantitative genetics framework for binary traits in a single environment, analyzing their plasticity requires more refined empirical and theoretical approaches. The statistical framework proposed here, based on the environmental threshold model (ETM), should partially fill this gap. This methodology is applied to an empirical dataset on a plastic sexual polymorphism, aphally, in the snail Bulinus truncatus. Aphally is characterized by the co-occurrence of regular hermaphrodites (euphallics) together with hermaphrodites deprived of the male copulatory organ (aphallics). Reaction norms were determined for 40 inbred lines, distributed at three temperatures, in a first experiment. A second experiment allowed us to rule out maternal effects. We confirmed the existence of high broad-sense heritabilities as well as a positive effect of high temperatures on aphally. However a significant genotype-by-environment interaction was detected for the first time, suggesting that sexual plasticity itself can respond to selection. A nested series of four ETM-like models was developed for estimating genetical effects on both mean aphally rate and plasticity. These models were tested using a maximum-likelihood procedure and fitted to aphally data. Although no perfect fit of models to data was observed, the refined versions of ETM models conveniently reduce the analysis of complex reaction norms of binary traits into standard quantitative genetics parameters, such as genetic values and environmental variances. [source]


The Temporal Asynchrony of Planktonic Cladocerans Population at Different Environments of the Upper Paraná River Floodplain

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 6 2008
Erica Mayumi Takahashi
Abstract The aim of this study was to investigate the existence of synchronic fluctuation patterns in cladoceran populations of the Upper Paraná River floodplain. The following hypothesis were tested: (i) the populations of a given species present the same fluctuation pattern in abundance for different environments and (ii) synchrony is higher when we consider subsets of neighboring environments or those belonging to the same category (e.g., lagoons, rivers). Samplings were performed every three months from February 2000 to November 2002 at 11 sites. To evaluate spatial synchrony, the intraclass correlation coefficient was used. The results showed no significant correlation for the most abundant species, meaning that fluctuation patterns of planktonic cladocerans were asynchronous. Asynchrony indicated that the influence of floods and regional climatic factors was not strong enough to synchronize the populations, suggesting that local factors were more important than regional effects in determining zooplankton abundance patterns. The implications of these results are that the observations from a single environment cannot be extrapolated to other environments in a manner that would allow its use as a sentinel site. This means that a monitoring program for floodplain systems, or at least for the Paraná River floodplain, has to comprise greater spatial extents. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Selection experiments and the study of phenotypic plasticity,

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2002
S. M. Scheiner
Abstract Laboratory selection experiments are powerful tools for establishing evolutionary potentials. Such experiments provide two types of information, knowledge about genetic architecture and insight into evolutionary dynamics. They can be roughly classified into two types: (1) artificial selection in which the experimenter selects on a focal trait or trait index, and (2) quasi-natural selection in which the experimenter establishes a set of environmental conditions and then allows the population to evolve. Both approaches have been used in the study of phenotypic plasticity. Artificial selection experiments have taken various forms including: selection directly on a reaction norm, selection on a trait in multiple environments, and selection on a trait in a single environment. In the latter experiments, evolution of phenotypic plasticity is investigated as a correlated response. Quasi-natural selection experiments have examined the effects of both spatial and temporal variation. I describe how to carry out such experiments, summarize past efforts, and suggest further avenues of research. [source]


A quantitative genetic analysis of leaf beetle larval performance on two natural hosts: including a mixed diet

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2000
Ballabeni
Published quantitative genetic studies of larval performance on different host plants have always compared performance on one host species or genotype vs. performance on another species or genotype. The fact that some insects may feed on more than one plant species during their development has been neglected. We executed a quantitative genetic analysis of performance with larvae of the leaf beetle Oreinaelongata, raised on each of two sympatric host plants or on a mixture of them. Growth rate was higher for larvae feeding on Adenostylesalliariae, intermediate on the mixed diet and lowest on Cirsium spinosissimum. Development time was shortest on A. alliariae, intermediate on mixed diet and longest on C. spinosissimum. Survival was higher on the mixed diet than on both pure hosts. Genetic variation was present for all three performance traits but a genotype by host interaction was found only for growth rate. However, the reaction norms for growth rate are unlikely to evolve towards an optimal shape because of a lack of heritability of growth rate in each single environment. We found no negative genetic correlations for performance traits among hosts. Therefore, our results do not support a hypothesis predicting the existence of between-host trade-offs in performance when both hosts are sympatric with an insect population. We conclude that the evolution of host specialized genotypes is unlikely in the study population. [source]