Home About us Contact | |||
Single Electron Transfer (single + electron_transfer)
Selected AbstractsHighly Diastereoselective Ionic/Radical Domino Reactions: Single Electron Transfer Induced Cyclization of Bis-sulfoxides.CHEMINFORM, Issue 47 2007Jean-Philippe Goddard Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source] Theoretical Studies on ortho -Oxidation of Phenols with Dioxygen Mediated by Dicopper Complex: Hints for a Catalyst with the Phenolase Activity of TyrosinaseADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4-5 2007Hiroshi Naka Abstract Theoretical studies on the chemo- and regioselective ortho -oxidation reaction of phenols mediated by a biomimetic (,,,2:,2peroxo)dicopper(II) complex were performed using unrestricted hybrid density functional theory (UB3LYP) calculations, with the aim of providing a guide for the development of new bio-inspired catalysts with the phenolase activity of tyrosinase. Energetic, structural, and electronic analyses suggested the involvement of a side-on (,,,2:,2)-Cu2O2 complex as an active intermediate, and a single electron transfer (SET)-induced electrophilic aromatic substitution mechanism is proposed for the rate-determining CO bond forming process; this is consistent with experimental observations. Moreover, the inherent roles of, and requirement for, two copper ions in this reaction have been elucidated. [source] The reaction of acetic acid 2-selenoxo-2H -pyridin-1-yl esters with benzynes: A convenient route to Benzo[b]seleno[2,3- b]pyridinesJOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 1 2004U. Narasimha Rao Benzyne and its 3,4,5,6-tetraphenyl, 3- and 4-methyl, 3-methoxy and 4,5-difluoro derivatives react with acetic acid 2-selenoxo-2H -pyridin-1-yl esters 4a-e to give benzo[b]seleno[2,3- b]pyridines 10,15 in modest yields. The benzynes were generated by one or more of the following methods: diazotization of anthranilic acids 5a-g with isoamyl nitrate; mild thermal decomposition of 2-diazoniobenzenecarboxylate hydrochlorides 6a-d treatment of (phenyl)[o -(trimethylsilyl)phenyl]iodonium triflate (7) with tetrabutylammonium fluoride; and treatment of 2-trimethylsilylphenyl triflates 8a-c with cesium fluoride. In all the reactions, the corresponding 2-(methylselenenyl)pyridines 16a-d were also obtained suggesting that these reactions may involve selenium addition to benzyne via a SET (single electron transfer). [source] Synthesis of high glass transition temperature copolymers based on poly(vinyl chloride) via single electron transfer,Degenerative chain transfer mediated living radical polymerization (SET-DTLRP) of vinyl chloride in waterJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2009Jorge F. J. Coelho Abstract ,,,-di(iodo) poly(isobornyl acrylate) macroiniators (,,,-di(iodo)PIA) with number average molecular weight from Mn,TriSEC = 11,456 to Mn,TriSEC = 94,361 were synthesized by single electron transfer-degenerative chain transfer mediated living radical polymerization (SET-DTLRP) of isobornyl acrylate (IA) initiated with iodoform (CHI3) and catalyzed by sodium dithionite (Na2S2O4) in water at 35 °C. The plots of number average molecular weight vs conversion and ln{[M]0/[M]} vs time are linear, indicating a controlled polymerization. ,,,-di(iodo) poly(isobornyl acrylate) have been used as a macroinitiator for the SET-DTLRP of vinyl chloride (VCM) leading to high Tg block copolymers PVC-b-PIA-b-PVC. The dynamic mechanical thermal analysis of the block copolymers suggests just one phase indicating that copolymer behaves as a single material. This technology provides the possibility of synthesizing materials based on PVC with higher Tg in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009 [source] Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl)amine or polyethyleneimine in water at 25 °C proceeds by a new competing pathways mechanismJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2003Virgil Percec Abstract The first example of living radical polymerization of vinyl chloride carried out in water at 25 °C is reported. This polymerization was initiated by iodoform and catalyzed by nascent Cu0 produced by the disproportionation of CuI in the presence of strongly CuII binding ligands such as tris(2-aminoethyl)amine or polyethyleneimine. The resulting poly(vinyl chloride) was free of structural defects, had controlled molecular weight and narrow molecular weight distribution, contained two ,CHClI active chain ends, and had a higher syndiotacticity (62%) than the one obtained by conventional free-radical polymerization at the same temperature (56%). This novel polymerization proceeds, most probably, by a combination of competitive pathways that involves activation by single electron transfer mediated by nascent Cu0 and degenerative chain transfer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3283,3299, 2003 [source] Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins: Relationship with Flavoenzyme Function and Antimalarial Mechanism of ActionCHEMMEDCHEM, Issue 8 2010Richard Abstract The antimalarial drug methylene blue (MB) affects the redox behaviour of parasite flavin-dependent disulfide reductases such as glutathione reductase (GR) that control oxidative stress in the malaria parasite. The reduced flavin adenine dinucleotide cofactor FADH2 initiates reduction to leucomethylene blue (LMB), which is oxidised by oxygen to generate reactive oxygen species (ROS) and MB. MB then acts as a subversive substrate for NADPH normally required to regenerate FADH2 for enzyme function. The synergism between MB and the peroxidic antimalarial artemisinin derivative artesunate suggests that artemisinins have a complementary mode of action. We find that artemisinins are transformed by LMB generated from MB and ascorbic acid (AA) or N -benzyldihydronicotinamide (BNAH) in,situ in aqueous buffer at physiological pH into single electron transfer (SET) rearrangement products or two-electron reduction products, the latter of which dominates with BNAH. Neither AA nor BNAH alone affects the artemisinins. The AA,MB SET reactions are enhanced under aerobic conditions, and the major products obtained here are structurally closely related to one such product already reported to form in an intracellular medium. A ketyl arising via SET with the artemisinin is invoked to explain their formation. Dihydroflavins generated from riboflavin (RF) and FAD by pretreatment with sodium dithionite are rapidly oxidised by artemisinin to the parent flavins. When catalytic amounts of RF, FAD, and other flavins are reduced in,situ by excess BNAH or NAD(P)H in the presence of the artemisinins in the aqueous buffer, they are rapidly oxidised to the parent flavins with concomitant formation of two-electron reduction products from the artemisinins; regeneration of the reduced flavin by excess reductant maintains a catalytic cycle until the artemisinin is consumed. In preliminary experiments, we show that NADPH consumption in yeast GR with redox behaviour similar to that of parasite GR is enhanced by artemisinins, especially under aerobic conditions. Recombinant human GR is not affected. Artemisinins thus may act as antimalarial drugs by perturbing the redox balance within the malaria parasite, both by oxidising FADH2 in parasite GR or other parasite flavoenzymes, and by initiating autoxidation of the dihydroflavin by oxygen with generation of ROS. Reduction of the artemisinin is proposed to occur via hydride transfer from LMB or the dihydroflavin to O1 of the peroxide. This hitherto unrecorded reactivity profile conforms with known structure,activity relationships of artemisinins, is consistent with their known ability to generate ROS in,vivo, and explains the synergism between artemisinins and redox-active antimalarial drugs such as MB and doxorubicin. As the artemisinins appear to be relatively inert towards human GR, a putative model that accounts for the selective potency of artemisinins towards the malaria parasite also becomes apparent. Decisively, ferrous iron or carbon-centered free radicals cannot be involved, and the reactivity described herein reconciles disparate observations that are incompatible with the ferrous iron,carbon radical hypothesis for antimalarial mechanism of action. Finally, the urgent enquiry into the emerging resistance of the malaria parasite to artemisinins may now in one part address the possibilities either of structural changes taking place in parasite flavoenzymes that render the flavin cofactor less accessible to artemisinins or of an enhancement in the ability to use intra-erythrocytic human disulfide reductases required for maintenance of parasite redox balance. [source] |