Simplified Methods (simplified + methods)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: Simplified Methods for the Functionalization of 3-Hexoxythiophenes at the 5-Position and Further Reactions to Alkynyl and Vinyl Derivatives.

CHEMINFORM, Issue 25 2009
Mike Joachim Zoellner
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Evaluation of simplified methods of analysis for structures with triple friction pendulum isolators

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 1 2010
Fabio Fadi
Abstract Triple friction pendulum isolators, that exhibit behavior with amplitude-dependent strength and instantaneous stiffness, represent a new development in seismic isolation. The application of simplified methods of analysis for this type of seismically isolated structures requires development of tools of simplified analysis and demonstration of their accuracy. This paper describes these tools and presents validation studies based on a large number of nonlinear response history analysis results. It is shown that simplified methods of analysis systematically provide good and often conservative estimates of isolator displacement demands and good estimates of isolator peak velocities. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Applicability of pushover methods for the seismic analysis of single-column bent viaducts

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2008
Tatjana Isakovi
Abstract An overview of the applicability of a typical single-mode pushover method (the N2 method) and two typical multi-mode pushover methods (the modal pushover analysis (MPA) and incremental response spectrum analysis (IRSA) methods) for the analysis of single column bent viaducts in the transverse direction is presented. Previous research, which was limited to relatively short viaducts supported by few columns, has been extended to longer viaducts with more bents. The single-mode N2 method is accurate enough for bridges where the effective modal mass of the fundamental mode is at least 80% of the total mass. The applicability of this method depends on (a) the ratio of the stiffness of the superstructure to that of the bents and (b) the strength of the bents. In short bridges with few columns, the accuracy of the N2 method increases as the seismic intensity increases, whereas in long viaducts (e.g. viaducts with lengths greater than 500,m) the method is in general less effective. In the case of the analyzed moderately irregular long viaducts, which are common in construction design practice, the MPA method performed well. For the analysis of bridges where the modes change significantly, depending on the seismic intensity, the IRSA method is in principle more appropriate, unless a viaduct is torsionally sensitive. In such cases, all simplified methods should be used with care. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Simplification of analytical models and incorporation with CFD for the performance predication of closed-wet cooling towers

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2002
Ala Hasan
Abstract Simplified analytical models are developed for evaluating the thermal performance of closed-wet cooling towers (CWCTs) for use with chilled ceilings in cooling of buildings. Two methods of simplification are used with regard to the temperature of spray water inside the tower. The results obtained from these models for a prototype cooling tower are very close to experimental measurements. The thermal performance of the cooling tower is evaluated under nominal conditions. The results show that the maximum difference in the calculated cooling water heat or air sensible heat between the two simplified methods and a general computational model is less than 3%. The analytical model distribution of the sensible heat along the tower is then incorporated with computational fluid dynamics (CFD) to assess the thermal performance of the tower. It is found that CFD results agree well with the analytical results when the air flow is simulated with air supply from the bottom of the tower, which represents a uniform air flow. CFD shows the importance of the uniform distribution of air and spray water to achieve optimum design. Copyright © 2002 John Wiley & Sons, Ltd. [source]