Simple Manner (simple + manner)

Distribution by Scientific Domains


Selected Abstracts


Electrochemical Sensing of Explosives

ELECTROANALYSIS, Issue 4 2007
Joseph Wang
Abstract This article reviews recent advances in electrochemical sensing and detection of explosive substances. Escalating threats of terrorist activities and growing environmental concerns have generated major demands for innovative field-deployable tools for detecting explosives in a fast, sensitive, reliable and simple manner. Field detection of explosive substances requires that a powerful analytical performance be coupled to miniaturized low-cost instrumentation. Electrochemical devices offer attractive opportunities for addressing the growing explosive sensing needs. The advantages of electrochemical systems include high sensitivity and selectivity, speed, a wide linear range, compatibility with modern microfabrication techniques, minimal space and power requirements, and low-cost instrumentation. The inherent electroactivity of nitroaromatic, nitramine and nitroester compounds makes them ideal candidates for electrochemical detection. Recent activity in various laboratories has led to the development of disposable sensor strips, novel electrode materials, submersible remote sensors, and electrochemical detectors for microchip (,Lab-on-Chip') devices for on-site electrochemical detection of explosive substances. The attractive behavior of these electrochemical monitoring systems makes them very promising for addressing major security and environmental problems. [source]


A new transmission pricing approach for the electricity cross-border trade in the ASEAN Power Grid

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 2 2007
C. Adsoongnoen
Abstract The electricity cross-border trade is presently introduced among the member countries of the Association of South East Asian Nations (ASEAN). The ASEAN Power Grid (APG) is a plan to interconnect transmission networks among the ASEAN countries to optimize the use of energy resources; to operate the power network in an efficient, economical, and reliable manner; and to provide a close relation among the member countries by electric power interconnection. Transmission pricing is one of the controversial tasks to achieve the APG objectives. In this paper, a transmission pricing method for the electricity cross-border trade based on a combination of postage stamp method and sensitivity indices is proposed. The postage stamp pricing is a uniform tariff expected to recover the project investments, and the operation and maintenance costs. With the combination of the postage stamp method and sensitivity indices, the proposed pricing method sends proper incentive signals to power traders, which are based on system usage and congestion management. To demonstrate its effectiveness, the proposed method is applied to a 12-bus test system. The nodal tariffs at the particular injecting points, payments of the users, and revenues of transmission owners are computed. The simulation results indicate that the proposed method ensures a recovery of the investment costs and the concurrent costs of operation and maintenance in an efficient, fair, and simple manner. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio

FEBS JOURNAL, Issue 23 2008
Slavko Kralj
The reuteransucrase enzymes of Lactobacillus reuteri strain 121 (GTFA) and L. reuteri strain ATCC 55730 (GTFO) convert sucrose into ,- d -glucans (labelled reuterans) with mainly ,-(1,4) glucosidic linkages (50% and 70%, respectively), plus ,-(1,6) linkages. In the present study, we report a detailed analysis of various hybrid GTFA/O enzymes, resulting in the identification of specific regions in the N-termini of the catalytic domains of these proteins as the main determinants of glucosidic linkage specificity. These regions were divided into three equal parts (A1,3; O1,3), and used to construct six additional GTFA/O hybrids. All hybrid enzymes were able to synthesize ,-glucans from sucrose, and oligosaccharides from sucrose plus maltose or isomaltose as acceptor substrates. Interestingly, not only the A2/O2 regions, with the three catalytic residues, affect glucosidic linkage specificity, but also the upstream A1/O1 regions make a strong contribution. Some GTFO derived hybrid/mutant enzymes displayed strongly increased transglucosylation/hydrolysis activity ratios. The reduced sucrose hydrolysis allowed the much improved conversion of sucrose into oligo- and polysaccharide products. Thus, the glucosidic linkage specificity and transglucosylation/hydrolysis ratios of reuteransucrase enzymes can be manipulated in a relatively simple manner. This engineering approach has yielded clear changes in oligosaccharide product profiles, as well as a range of novel reuteran products differing in ,-(1,4) and ,-(1,6) linkage ratios. [source]


Accelerating strategies to the numerical simulation of large-scale models for sequential excavation

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2007
M. Noronha
Abstract In this paper, a novel combination of well-established numerical procedures is explored in order to accelerate the simulation of sequential excavation. Usually, large-scale models are used to represent these problems. Due to the high number of equations involved, the solver algorithm represents the critical aspect which makes the simulation very time consuming. The mutable nature of the excavation models makes this problem even more pronounced. To accomplish the representation of geometrical and mechanical aspects in an efficient and simple manner, the proposed solution employs the boundary element method with a multiple-region strategy. Together with this representational system, a segmented storage scheme and a time-ordered tracking of the changes form an adequate basis for the usage of fast updating methods instead of frontal solvers. The present development employs the Sherman,Morrison,Woodbury method to speed up the calculation due to sequential changes. The efficiency of the proposed framework is illustrated through the simulation of test examples of 2D and 3D models. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Management of metadata and automation for mail-in measurements with the APS 11-BM high-throughput, high-resolution synchrotron powder diffractometer

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 6 2009
Brian H. Toby
A high-resolution and high-throughput synchrotron powder diffractometer has been automated for use with samples that are mailed in by Advanced Photon Source users. Implementation of a relational database with web interfaces for both outside users and beamline staff, which is integrated into the facility-wide proposal and safety system, allows all aspects of beamline management to be integrated. This system permits users to request kits for mounting samples, to provide sample safety information, to obtain their collected data and to provide usage information upon project completion in a quick and simple manner. Beamline staff use a separate interface to note receipt of samples, schedule and collect diffraction data, post-process and quality-check data, and dispose of samples. The design of the software and database are discussed in detail. [source]


Capillary electrochromatographic chiral separations with potential for pharmaceutical analysis

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2005
Debby Mangelings
Abstract The use of capillary electrochromatography as a chiral separation technique for pharmaceutical applications is reviewed. Publications of the past 10 years that provide a potential practical application in pharmaceutical analysis are considered. Method development or validation, separation strategies, and potential routine analysis by the methods/applications cited are the main subjects on which we focused our attention. The indirect chiral separation method was only used once in CEC mode. In the direct chiral separations, the use of chiral stationary phases was obviously preferred over the use of chiral mobile phases with non-chiral stationary phases. Amongst the chiral stationary phases, those based on macrocyclic antibiotics and polysaccharide selectors were the most frequently used. Monolithic stationary phases also have several applications, but not so extended as those with packed capillary electrochromatography. The considered papers not only describe the applicability of the technique for relatively large sets of chiral analytes, they also showed that various types of stationary phases can be produced in-house in a simple manner. However, to survive as a mature separation technique, considerable time and effort are still needed to solve some disadvantages currently characterizing capillary electrochromatography. [source]


Fluid-Borne entities in the impeller stream of a rushton turbine

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2000
Larry A. Glasgow
Abstract The breakage or disintegration of suspended entities by energetic fluid motions in stirred tanks is an essential aspect of many operations in the chemical process industries. However, the hydrodynamic inhomogeneity of such tanks makes it extremely difficult to characterize the stresses experienced in any simple manner. This work provides a determination of both the location and the frequency of interaction of spherical fluid-borne entities with the discharge of a Rushton turbine. These data show how both particle size and impeller speed affect the severity of the exposure, setting the groundwork for improved descriptions of the dynamic behaviour of the particle size distribution in a wide variety of dispersed-phase processes. La rupture ou la désintégration de particules suspendues par des déplacements de fluides énergé-tiques dans des réservoirs agités est un aspect essentiel de nombreuses opérations des industries de procédés chimiques. Toutefois, la non-homogénéité hydrody-namique de ces réservoirs rend extrçmement difficile la caractérisation des forces en jeu par une méthode simple. On détermine dans ce travail la position et la fréquence d'interaction de particules sphériques transpottées par le fluide dans la zone de refoulement d'une turbine Rushton. Ces données montrent comment la taille des particules et la vitesse de la turbine influent toutes deux sur la sévérité de l'exposi-tion, jetant ainsi les bases pour améliorer la description du comportement dynamique de la distribution de taille des particules dans un large éventail de procédés en phase dispersée. [source]


Modelling interactions between fold,thrust belt deformation, foreland flexure and surface mass transport

BASIN RESEARCH, Issue 2 2006
Guy D. H. Simpson
ABSTRACT Interactions between fold and thrust belt deformation, foreland flexure and surface mass transport are investigated using a newly developed mathematical model incorporating fully dynamic coupling between mechanics and surface processes. The mechanical model is two dimensional (plane strain) and includes an elasto-visco-plastic rheology. The evolving model is flexurally compensated using an elastic beam formulation. Erosion and deposition at the surface are treated in a simple manner using a linear diffusion equation. The model is solved with the finite element method using a Lagrangian scheme with marker particles. Because the model is particle based, it enables straightforward tracking of stratigraphy and exhumation paths and it can sustain very large strain. It is thus ideally suited to study deformation, erosion and sedimentation in fold,thrust belts and foreland basins. The model is used to investigate how fold,thrust deformation and foreland basin development is influenced by the non-dimensional parameter , which can be interpreted as the ratio of the deformation time scale to the time scale for surface processes. Large values of imply that the rate of surface mass transport is significantly greater than the rate of deformation. When , the rates of surface processes are so slow that one observes a classic propagating fold,thrust belt with well-developed wedge top basins and a largely underfilled foreland flexural depression. Increasing causes (1) deposition to shift progressively from the wedge top into the foredeep, which deepens and may eventually become filled, (2) widespread exhumation of the fold,thrust belt, (3) reduced rates of frontal thrust propagation and possible attainment of a steady-state orogen width and (4) change in the style and dynamics of deformation. Together, these effects indicate that erosion and sedimentation, rather than passively responding to tectonics, play an active and dynamic role in the development of fold,thrust belts and foreland basins. Results demonstrate that regional differences in the relative rates of surface processes (e.g. because of different climatic settings) may lead to fold,thrust belts and foreland basins with markedly different characteristics. Results also imply that variations in the efficiency of surface processes through time (e.g., because of climate change or the emergence of orogens above sea level) may cause major temporal changes in orogen and basin dynamics. [source]


A Robust Protein Host for Anchoring Chelating Ligands and Organocatalysts

CHEMBIOCHEM, Issue 4 2008
Manfred T. Reetz Prof. Dr.
Abstract In order to put the previously proposed concept of directed evolution of hybrid catalysts (proteins that harbor synthetic transition-metal catalysts or organocatalysts) into practice, several prerequisites must be met. The availability of a robust host protein that can be expressed in sufficiently large amounts, and that can be purified in a simple manner is crucial. The thermostable enzyme tHisF from Thermotoga maritima, which constitutes the synthase subunit of a bi-enzyme complex that is instrumental in the biosynthesis of histidine, fulfills these requirements. In the present study, fermentation has been miniaturized and parallelized, as has purification of the protein by simple heat treatment. Several mutants with strategically placed cysteines for subsequent bioconjugation have been produced. One of the tHisF mutants, Cys9Ala/Asp11Cys, was subjected to bioconjugation by the introduction of a variety of ligands for potential metal ligation, of a ligand/metal moiety, and of several organocatalytic entities that comprise a flavin or thiazolium salts. Characterization by mass spectrometry and tryptic digestion was achieved. As a result of this study, a platform for performing future directed evolution of these hybrid catalysts is now available. [source]