Similar Topologies (similar + topology)

Distribution by Scientific Domains


Selected Abstracts


Molecular systematics in the genus Clintonia and related taxa based on rbcL and matK gene sequence data

PLANT SPECIES BIOLOGY, Issue 2 2001
Kazuhiko Hayashi
Abstract In an attempt to elucidate the affinity and phylogeny of the disjunct North American,eastern Asian genus Clintonia, two chloroplast genes, rbcL and matK, were sequenced for all five species (Clintonia andrewsiana, Clintonia borealis, Clintonia umbellulata, Clintonia uniflora and Clintonia udensis). Similar sequence data sets for both genes supported the idea that a monophyly of Clintonia consists of two clades, one in eastern Asia and one in North America. The North American lineage resolves into an eastern group and a western group. There are surprisingly few site substitutions within these two genes, notwithstanding the wide morphological diversity of the genus. To root the Clintonia trees, Cardiocrinum (=Lilium) cordatum, Medeola virginiana, Scoliopus bigelovii and Scoliopus hallii were used as outgroup taxa. Similar topologies for Clintonia resulted when both the rbcL and matK gene sequences were combined. However, when an amino acid tree was generated for the matK sequence, all differences between the North American species were reduced to similarities due to synonymous codon sequences. Differentiation patterns of some selected morphological, karyological and embryological characters in Clintonia were also reviewed in comparison to the resulting molecular topologies. The unique, Clintonia -type megasporogenesis that produced identical, maternally derived, diploid zygotes and endosperm coupled to polyploid buffering provides a considerable constraint on variability. A search of possible sister genera to Clintonia was also attempted based on the molecular analyses and outgroup analysis, and Medeola virginiana from eastern North America turned out to be the closest relative found. [source]


Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations

PROTEIN SCIENCE, Issue 2 2002
Buyong Ma
Abstract Here, we comment on the steadily increasing body of data showing that proteins with specificity actually bind ligands of diverse shapes, sizes, and composition. Such a phenomenon is not surprising when one considers that binding is a dynamic process with populations in equilibrium and that the shape of the binding site is strongly influenced by the molecular partner. It derives implicitly from the concept of populations. All proteins, specific and nonspecific, exist in ensembles of substates. If the library of ligands in solution is large enough, favorably matching ligands with altered shapes and sizes can be expected to bind, with a redistribution of the protein populations. Point mutations at spatially distant sites may exert large conformational rearrangements and hinge effects, consistent with mutations away from the binding site leading to population shifts and (cross-)drug resistance. A similar effect is observed in protein superfamilies, in which different sequences with similar topologies display similar large-scale dynamic motions. The hinges are frequently at analogous sites, yet with different substrate specificity. Similar topologies yield similar conformational isomers, although with different distributions of population times, owing to the change in the conditions, that is, the change in the sequences. In turn, different distributions relate to binding of different sizes and shapes. Hence, the binding site shape and size are defined by the ligand. They are not independent entities of fixed proportions and cannot be analyzed independently of the binding partner. Such a proposition derives from viewing proteins as dynamic distributions, presenting to the incoming ligands a range of binding site shapes. It illustrates how presumably specific binding molecules can bind multiple ligands. In terms of drug design, the ability of a single receptor to recognize many dissimilar ligands shows the need to consider more diverse molecules. It provides a rationale for higher affinity inhibitors that are not derived from substrates at their transition states and indicates flexible docking schemes. [source]


PHYLOGENY OF THE EUGLENALES INFERRED FROM PLASTID LSU rDNA SEQUENCES,

JOURNAL OF PHYCOLOGY, Issue 4 2008
Jong Im Kim
To gain insights into the phylogeny of the Euglenales, we analyzed the plastid LSU rDNA sequences from 101 strains of the photosynthetic euglenoids belonging to nine ingroup genera (Euglena, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium, Discoplastis, Phacus, and Lepocinclis) and two outgroup genera (Eutreptia and Eutreptiella). Bayesian and maximum-likelihood (ML) analyses resulted in trees of similar topologies and four major clades: a Phacus and Lepocinclis clade; a Colacium clade; a Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade; and a Euglena clade. The Phacus and Lepocinclis clade was the sister group of all other euglenalian genera, followed by Discoplastis spathirhyncha (Skuja) Triemer and the Colacium clade, respectively, which was inconsistent with their placement based on nuclear rDNA genes. The Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade was sister to the Euglena clade. The loricate genera, Trachelomonas and Strombomonas, were closely related to each other, while Monomorphina and Cryptoglena also grouped together. The Euglena clade formed a monophyletic lineage comprising most species from taxa formerly allocated to the subgenera Calliglena and Euglena. However, within this genus, none of the subgenera was monophyletic. [source]


Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations

PROTEIN SCIENCE, Issue 2 2002
Buyong Ma
Abstract Here, we comment on the steadily increasing body of data showing that proteins with specificity actually bind ligands of diverse shapes, sizes, and composition. Such a phenomenon is not surprising when one considers that binding is a dynamic process with populations in equilibrium and that the shape of the binding site is strongly influenced by the molecular partner. It derives implicitly from the concept of populations. All proteins, specific and nonspecific, exist in ensembles of substates. If the library of ligands in solution is large enough, favorably matching ligands with altered shapes and sizes can be expected to bind, with a redistribution of the protein populations. Point mutations at spatially distant sites may exert large conformational rearrangements and hinge effects, consistent with mutations away from the binding site leading to population shifts and (cross-)drug resistance. A similar effect is observed in protein superfamilies, in which different sequences with similar topologies display similar large-scale dynamic motions. The hinges are frequently at analogous sites, yet with different substrate specificity. Similar topologies yield similar conformational isomers, although with different distributions of population times, owing to the change in the conditions, that is, the change in the sequences. In turn, different distributions relate to binding of different sizes and shapes. Hence, the binding site shape and size are defined by the ligand. They are not independent entities of fixed proportions and cannot be analyzed independently of the binding partner. Such a proposition derives from viewing proteins as dynamic distributions, presenting to the incoming ligands a range of binding site shapes. It illustrates how presumably specific binding molecules can bind multiple ligands. In terms of drug design, the ability of a single receptor to recognize many dissimilar ligands shows the need to consider more diverse molecules. It provides a rationale for higher affinity inhibitors that are not derived from substrates at their transition states and indicates flexible docking schemes. [source]


A Molecular Phylogenetic Investigation of Opisthonecta and Related Genera (Ciliophora, Peritrichia, Sessilida)

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 3 2007
DANIEL WILLIAMS
ABSTRACT. The gene encoding 18S small subunit ribosomal RNA (ssu rRNA) was sequenced in the sessiline peritrichs Opisthonecta minima and Opisthonecta matiensis, whose free-swimming, paedomorphic trophonts resemble telotrochs. Using these new sequences, phylogenetic trees were constructed with four different methods to test a previously published association between Opisthonecta henneguyi and members of the families Vorticellidae and Astylozoidae. All trees had similar topologies, with O. minima, O. henneguyi, Vorticella microstoma, and Astylozoon enriquesi forming a well-supported, certainly monophyletic clade. On the basis of genetic evidence, genera of the families Opisthonectidae and Astylozoidae are assigned to the family Vorticellidae, which already includes some species with free-swimming morphotypes. The ssu rRNA sequence of O. matiensis places it in the family Epistylididae; its taxonomic revision will be left to another group of authors. A close association of Ophrydium versatile with members of the family Vorticellidae was confirmed, casting doubt on the validity of the family Ophrydiidae. Epistylis galea, Campanella umbellaria, and Opercularia microdiscum are confirmed as comprising an extremely distinct, monophyletic, but morphologically heterogeneous clade that is basal to other clades of sessiline peritrichs. [source]


Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological data

CLADISTICS, Issue 6 2005
Asta Audzijonyt
We studied the phylogenetic history of opossum shrimps of the genus Mysis Latreille, 1802 (Crustacea: Mysida) using parsimony analyses of morphological characters, DNA sequence data from mitochondrial (16S, COI and CytB) and nuclear genes (ITS2, 18S), and eight allozyme loci. With these data we aimed to resolve a long-debated question of the origin of the non-marine (continental) taxa in the genus, i.e., "glacial relicts" in circumpolar postglacial lakes and "arctic immigrants" in the Caspian Sea. A simultaneous analysis of the data sets gave a single tree supporting monophyly of all continental species, as well as monophyly of the taxa from circumpolar lakes and from the Caspian Sea. A clade of three circumarctic marine species was sister group to the continental taxa, whereas Atlantic species had more distant relationships to the others. Small molecular differentiation among the morphologically diverse endemic species from the Caspian Sea suggested their recent speciation, while the phenotypically more uniform "glacial relict" species from circumpolar lakes (Mysis relicta group) showed deep molecular divergences. For the length-variable ITS2 region both direct optimization and a priori alignment procedures gave similar topologies, although the former approach provided a better overall resolution. In terms of partitioned Bremer support (PBS), mitochondrial protein coding genes provided the largest contribution (83%) to the total tree resolution. This estimate however, appears to be partly spurious, due to the concerted inheritance of mitochondrial characters and probable cases of introgression or ancestral polymorphism. The Willi Hennig Society 2005. [source]


The phylogeny of the Histeroidea (Coleoptera: Staphyliniformia)

CLADISTICS, Issue 4 2002
Michael S. Caterino
For its size (ca. 4000 species) the Histeridae is one of the most ecologically and morphologically diverse families of beetles. Its mostly predaceous members occupy a wide variety of habitats for which their morphologies may be highly modified. Previous attempts to resolve the phylogeny of the family based on morphological data have left many difficult issues unresolved. This study is the first to utilize either larval or molecular (18S rDNA) data in combination with adult morphology in an attempt to resolve these issues. We compare the performance of optimization alignment with a fixed positional homology approach, over a range of parameter space. Optimizing alignment parameters for combined analyses of 18S and morphology for both approaches resulted in very similar topologies. Contrary to previous hypotheses which held the cylindrical, subcortical forms of the family (e.g., Niponius, Trypanaeus, Trypeticus) to be the most primitive, our analyses find these to be highly specialized forms derived from within other more generalized taxa. Basal lineages within the family instead include Onthophilus, Anapleus, and Dendrophilus, all of which are ovoid, mainly generalist forms. [source]


Phylogeography of cave pseudoscorpions in southern Australia

JOURNAL OF BIOGEOGRAPHY, Issue 6 2007
T. A. Moulds
Abstract Aim, To investigate molecular phylogenetic divergence and historical biogeography of the cave-dwelling pseudoscorpion genus Protochelifer. Location, Caves and nearby epigean habitats in southern Australia were sampled from western Victoria, Naracoorte Caves, Flinders Ranges, Kangaroo Island, Nullarbor Plain and south-west Western Australia. Methods, Allozyme electrophoresis (57 individuals) and a 569-base-pair section of the mtDNA COI gene (22 individuals) were used to reconstruct phylogenetic relationships among four cave species and three epigean species from 13 locations. Results, Phylogenetic reconstruction using the allozyme and mtDNA sequence data revealed a similar topology, showing recent speciation of several Protochelifer populations in caves from Naracoorte to the Nullarbor Plain. Naracoorte Caves contained a single species, Protochelifer naracoortensis, found in four separate caves, while all other cave species appear to be restricted to single caves. Main conclusions, At a local scale, as indicated by the four Naracoorte caves, dispersal is thought to occur via micro- and mesocaverns, and possibly by phoresy using insect or bat vectors. With current data we are unable to determine if cavernicolous species of Protochelifer have arisen from a single cave colonization event followed by phoretic dispersal on bats to other caves, or multiple cave-invasion events from independent epigean ancestors. Genetic heterogeneity among Protochelifer populations from Nullarbor caves suggest that P. cavernarum, the only species presently recorded from this region, is likely to constitute a species complex requiring further study to fully resolve its relationships. [source]


BIOCHEMICAL PHENOTYPES CORRESPONDING TO MOLECULAR PHYLOGENY OF THE RED ALGAE PLOCAMIUM (PLOCAMIALES, RHODOPHYTA): IMPLICATIONS OF INCONGRUENCE WITH THE CONVENTIONAL TAXONOMY,

JOURNAL OF PHYCOLOGY, Issue 1 2006
Tomomi Yano
Among five species of the genus Plocamium Lamouroux distributed around Japan, P. cartilagineum (Linnaeus) Dixon, P. recurvatum Okamura and P. telfairiae (Hooker and Harvey) Harvey are often difficult to distinguish morphologically from each other. Our previous study demonstrated that P. recurvatum and P. telfairiae were divided into two groups, A and C, based on RUBISCO spacer sequence and that the specimens belonging to group C had acidic cell saps. In this study, we inferred evolutionary relationships of these Plocamium species from internal transcribed spacer sequence of the ribosomal RNA genes and obtained a similar topology to the RUBISCO spacer tree. Color of the dried specimens in the acidic group C was darker red than that in the non-acidic group A, although there was no difference in color in living thalli. The Br, concentration in the cell sap of the acidic group C was 20 times higher than that of the non-acidic group. We could not find any morphological differences to distinguish clearly between groups A and C despite exhaustive investigation of field-collected and cultured thalli in both P. recurvatum and P. telfairiae. These results suggest that the color of dried specimens and the composition of intracellular inorganic ions are significant criteria for interpreting phylogenetic relationships in Japanese Plocamium spp. [source]