Similar Mutation (similar + mutation)

Distribution by Scientific Domains


Selected Abstracts


Gs, Mutations in Fibrous Dysplasia and McCune-Albright Syndrome,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue S2 2006
Lee S Weinstein
Abstract Fibrous dysplasia (FD) is a focal bone lesion composed of immature mesenchymal osteoblastic precursor cells. Some FD patients also have hyperpigmented skin lesions (café-au-lait spots), gonadotropin-independent sexual precocity, and/or other endocrine and nonendocrine manifestations (McCune-Albright syndrome [MAS]). MAS results from somatic mutations occurring during early development, resulting in a widespread mosaic of normal and mutant-bearing cells, which predicts that the clinical presentation of each patient is determined by the extent and distribution of abnormal cells. These mutations encode constitutively active forms of Gs,, the ubiquitously expressed G protein ,-subunit that couples hormone receptors to intracellular cAMP generation. These mutations lead to substitution of amino acid residues that are critical for the intrinsic GTPase activity that is normally required to deactivate the G protein. This leads to prolonged activation of Gs, and its downstream effectors even with minimal receptor activation. This explains why MAS patients have stimulation of multiple peripheral endocrine glands in the absence of circulating stimulatory pituitary hormones and increased skin pigment, which is normally induced by melanocyte-stimulating hormone through Gs,/cAMP. Similar mutations are also present in 40% of pituitary tumors in acromegaly patients and less commonly in other endocrine tumors. FD results from increased cAMP in bone marrow stromal cells, leading to increased proliferation and abnormal differentiation. Parental origin of the mutated allele may also affect the clinical presentation, because Gs, is imprinted and expressed only from the maternal allele in some tissues (e.g., pituitary somatotrophs). [source]


Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision

MOLECULAR MICROBIOLOGY, Issue 6 2001
Douglas Hinerfeld
The binding of Tn916 Xis protein to its specific sites at the left and right ends of the transposon was compared using gel mobility shift assays. Xis formed two complexes with different electrophoretic mobilities with both right and left transposon ends. Complex II, with a reduced mobility, formed at higher concentrations of Xis and appeared at an eightfold lower Xis concentration with a DNA fragment from the left end of the transposon rather than with a DNA fragment from the right end of the transposon, indicating that Xis has a higher affinity for the left end of the transposon. Methylation interference was used to identify two G residues that were essential for binding of Xis to the right end of Tn916. Mutations in these residues reduced binding of Xis. In an in vivo assay, these mutations increased the frequency of excision of a minitransposon from a plasmid, indicating that binding of Xis at the right end of Tn916 inhibits transposon excision. A similar mutation in the specific binding site for Xis at the left end of the transposon did not reduce the affinity of Xis for the site but did perturb binding sufficiently to alter the pattern of protection by Xis from nuclease cleavage. This mutation reduced the level of transposon excision, indicating that binding of Xis to the left end of Tn916 is required for transposon excision. Thus, Xis is required for transposon excision and, at elevated concentrations, can also regulate this process. [source]


Mathematical model for the cancer stem cell hypothesis

CELL PROLIFERATION, Issue 1 2006
R. Ganguly
Various genes that regulate self-renewal in normal stem cells are also found in cancer stem cells. This implies that cancers can occur because of mutations in normal stem cells and early progenitor cells. A predictive mathematical model based on the cell compartment method is presented here to pose and validate non-intuitive scenarios proposed through the neural cancer stem cell hypothesis. The growths of abnormal (stem and early progenitor) cells from their normal counterparts are ascribed with separate mutation probabilities. Stem cell mutations are found to be more significant for the development of cancer than a similar mutation in the early progenitor cells. The model also predicts that, as previously hypothesized, repeated insult to mature cells increases the formation of abnormal progeny, and hence the risk of cancer. [source]


Screening for the BRCA1-ins6kbEx13 mutation: potential for misdiagnosis,,

HUMAN MUTATION, Issue 5 2007
Susan J Ramus
Abstract Misdiagnosis of a germline mutation associated with an inherited disease syndrome can have serious implications for the clinical management of patients. A false negative diagnosis (mutation missed by genetic screening) limits decision making about intervention strategies within families. More serious is the consequence of a false positive diagnosis (genetic test suggesting a mutation is present when it is not). This could lead to an individual, falsely diagnosed as a mutation carrier, undergoing unnecessary clinical intervention, possibly involving risk-reducing surgery. As part of screening 283 ovarian cancer families for BRCA1 mutations, we used two different methods (mutation specific PCR and multiplex ligation-dependant probe amplification) to screen for a known rearrangement mutation L78833.1:g.44369_50449dup (ins6kbEx13). We found false positive and false negative results in several families. We then tested 61 known carriers or non-carriers from an epidemiological study of BRCA1 and BRCA2 mutation carriers (the EMBRACE study). These data highlight the need for caution when interpreting analyses of the ins6kbEx13 mutation and similar mutations, where characterising the exact sequence alteration for a deleterious mutation is not a part of the routine genetic test. © 2007 Wiley-Liss, Inc. [source]


cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 17 2010
Dragana Trifunovi
Abstract Inherited retinal degeneration affecting both rod and cone photoreceptors constitutes one of the leading causes of blindness in the developed world. Such degeneration is at present untreatable, and the underlying neurodegenerative mechanisms are unknown, even though certain genetic causes have been established. The rd1 mouse is one of the best characterized animal models for rod photoreceptor degeneration, whereas the cpfl1 mouse is a recently discovered model for cone cell death. Because both animal models are affected by functionally similar mutations in the rod and cone phosphodiesterase 6 genes, respectively, we asked whether the mechanisms of photoreceptor degeneration in these two mouse lines share common pathways. In the present study, we followed the temporal progression of photoreceptor degeneration in the cpfl1 retina, correlated it with specific metabolic markers, and compared it with the wild-type and the rd1 situation. Similar to corresponding rd1 observations, cpfl1 cone photoreceptor cell death was associated with an accumulation of cyclic guanosine monophosphate (cGMP), activity of calpains, and phosphorylation of vasodilator-stimulated protein (VASP). Cone degeneration progressed rapidly, with a peak in cell death around postnatal day 24. Furthermore, cpfl1 cone photoreceptor migration during early postnatal development was delayed significantly compared with the corresponding wild-type retina. The finding that rod and cone photoreceptor degeneration was associated with the same metabolic markers suggests that in both cell types similar degenerative mechanisms are active. This raises the possibility that equivalent neuroprotective strategies may be used to prevent both rod and cone photoreceptor degeneration. J. Comp. Neurol. 518:3604,3617, 2010. © 2010 Wiley-Liss, Inc. [source]