Similar Intensity (similar + intensity)

Distribution by Scientific Domains


Selected Abstracts


THE EVOLUTION OF SEXUAL SIZE DIMORPHISM IN THE HOUSE FINCH.

EVOLUTION, Issue 6 2000

Abstract Recent colonization of ecologically distinct areas in North America by the house finch (Carpodacus mexicanus) was accompanied by strong population divergence in sexual size dimorphism. Here we examined whether this divergence was produced by population differences in local selection pressures acting on each sex. In a long-term study of recently established populations in Alabama, Michigan, and Montana, we examined three selection episodes for each sex: selection for pairing success, overwinter survival, and within-season fecundity. Populations varied in intensity of these selection episodes, the contribution of each episode to the net selection, and in the targets of selection. Direction and intensity of selection strongly differed between sexes, and different selection episodes often favored opposite changes in morphological traits. In each population, current net selection for sexual dimorphism was highly concordant with observed sexual dimorphism,in each population, selection for dimorphism was the strongest on the most dimorphic traits. Strong directional selection on sexually dimorphic traits, and similar intensities of selection in both sexes, suggest that in each of the recently established populations, both males and females are far from their local fitness optimum, and that sexual dimorphism has arisen from adaptive responses in both sexes. Population differences in patterns of selection on dimorphism, combined with both low levels of ontogenetic integration in heritable sexually dimorphic traits and sexual dimorphism in growth patterns, may account for the close correspondence between dimorphism in selection and observed dimorphism in morphology across house finch populations. [source]


SEXUAL DIMORPHISM IN RELATION TO CURRENT SELECTION IN THE HOUSE FINCH

EVOLUTION, Issue 3 2000
Alexander V. Badyaev
Abstract., Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch (Carpodacus mexicanus) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years. [source]


Secondary ion formation of low molecular weight organic dyes in time-of-flight static secondary ion mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2003
Jens Lenaerts
Time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) was used to characterize thin layers of oxy- and thiocarbocyanine dyes on Ag and Si. Apart from adduct ions a variety of structural fragment ions were detected for which a fragmentation pattern is proposed. Peak assignments were confirmed by comparing spectra of dyes with very similar structures. All secondary ions were assigned with a mass accuracy better than 50,ppm. The intensity of molecular ions as well as fragment ions has been studied as a function of the type of organic dye, the substrate, the layer thickness and the type of primary ion. A large yield difference of two orders of magnitude was observed between the precursor ions of cationic carbocyanine dyes and the protonated molecules of the anionic dyes. Fragment ions, on the other hand, yielded similar intensities for both types of dye. As the dye layers deposited on an Ag substrate yielded higher secondary ion intensities than those deposited on a Si substrate, the Ag metal clearly acts as a promoting agent for secondary ion formation. The effect was more pronounced for precursor signals than for fragment ions. The promoting effect decreased as the deposited layer thickness of the organic dye layer was increased. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 10 2001
John A. Moody
Abstract A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre-fire rates. The maximum unit-area peak discharge was 24 m3 s,1 km,2 for a rainstorm in 1996 with a rain intensity of 90 mm h,1. Recovery to pre-fire conditions seems to have occurred by 2000 because for a maximum 30-min rainfall intensity of 50 mm h,1, the unit-area peak discharge in 1997 was 6.6 m3 s,1 km,2, while in 2000 a similar intensity produced only 0.11 m3 s,1 km,2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200-fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd. [source]


Anticlastogenic, antitoxic and sorption effects of humic substances on the mutagen maleic hydrazide tested in leguminous plants

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2004
G. Ferrara
Summary The potential anticlastogenic and antitoxic effects of a soil humic acid (HA), a peat HA and a peat fulvic acid (FA) on the mutagen maleic hydrazide (MH) have been investigated in two legume species, Vicia faba and Pisum sativum. Both HAs and FA were tested at two different concentrations, 20 and 200 mg l,1, either alone or after 24-hour interaction with 10 mg l,1 of MH before addition to the legume seeds. Anticlastogenicity, i.e. an antimutagenic action defined as the capacity for minimizing chromosome breakages, was evaluated by counting both micronuclei (MN) and aberrant anatelophases (AAT) in root-tip cells. Length and dry weight of the seedling primary root were measured to test the antitoxic activity of HA and FA on MH. The possible occurrence and extent of adsorption or desorption of MH onto or from HA were also investigated. The two species responded differently to the anticlastogenic tests, with V. faba showing a greater number of MN and AAT anomalies than P. sativum. Peat HA and FA exhibited anticlastogenic and antitoxic activities of similar intensity and greater than those of soil HA. The adsorption capacity of both HAs for MH was small, thus suggesting that adsorption is not a major mechanism responsible for the reduction of clastogenicity and antitoxicity of MH by HA. [source]


CHARACTERIZATION OF A DINOFLAGELLATE CRYPTOCHROME BLUE-LIGHT RECEPTOR WITH A POSSIBLE ROLE IN CIRCADIAN CONTROL OF THE CELL CYCLE,

JOURNAL OF PHYCOLOGY, Issue 3 2007
Stephanie A. Brunelle
Karenia brevis (C. C. Davis) G. Hansen et Moestrup is a dinoflagellate responsible for red tides in the Gulf of Mexico. The signaling pathways regulating its cell cycle are of interest because they are the key to the formation of toxic blooms that cause mass marine animal die-offs and human illness. Karenia brevis displays phased cell division, in which cells enter S phase at precise times relative to the onset of light. Here, we demonstrate that a circadian rhythm underlies this behavior and that light quality affects the rate of cell-cycle progression: in blue light, K. brevis entered the S phase early relative to its behavior in white light of similar intensity, whereas in red light, K. brevis was not affected. A data base of 25,000 K. brevis expressed sequence tags (ESTs) revealed several sequences with similarity to cryptochrome blue-light receptors, but none related to known red-light receptors. We characterized the K. brevis cryptochrome (Kb CRY) and modeled its three-dimensional protein structure. Phylogenetic analysis of the photolyase/CRY gene family showed that Kb CRY is a member of the cryptochrome DASH (CRY DASH) clade. Western blotting with an antibody designed to bind a conserved peptide within Kb CRY identified a single band at ,55 kDa. Immunolocalization showed that Kb CRY, like CRY DASH in Arabidopsis, is localized to the chloroplast. This is the first blue-light receptor to be characterized in a dinoflagellate. As the Kb CRY appears to be the only blue-light receptor expressed, it is a likely candidate for circadian entrainment of the cell cycle. [source]


Production of monodisperse silver colloids by reduction with hydrazine: the effect of chloride and aggregation on SER(R)S signal intensity,

JOURNAL OF RAMAN SPECTROSCOPY, Issue 2 2004
U. Nickel
Abstract SER(R)S spectra with high signal intensity of Nile Blue A sulfate and 1,1,-diethyl-2,2,-cyanine iodide present in low concentration (,0.05 µM) can be recorded by employing certain silver sols in the absence of any chloride and without highly aggregated particles. The sols have been prepared by reduction of silver nitrate with hydrazine hydrate in a special procedure at a carefully established pH. In the presence of chloride, the maximum SER(R)S signal observed for a ca. 0.5 µM solution of Nile Blue A is of similar magnitude employing either a silver sol according to Lee and Meisel or our sol C, which contains nearly exclusively single silver particles with diameters of about 50 nm. Without added chloride, however, only our sol produces SER(R)S spectra with similar intensity as with chloride. Because the influence of chloride and coagulation on the intensity of the SER(R)S-signal can be controlled by varying the additives to our silver sol, further experiments of this kind can help to elucidate how these two parameters influence the magnitude of the SERS enhancement. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Electronic Security Systems and Active Implantable Medical Devices

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 8 2002
WERNER IRNICH
IRNICH, W.: Electronic Security Systems and Active Implantable Medical Devices. How do active implantable medical devices react in the presence of strong magnetic fields in the frequency range between extremely low frequency (ELF) to radiofrequency (RF) as they are emitted by electronic security systems (ESS)? There are three different sorts of ESSs: electronic article surveillance (EAS) devices, metal detector (MDS) devices, and radiofrequency identification (RFID) systems. Common to all is the production of magnetic fields. There is an abundance of literature concerning interference by ESS gates with respect to if there is an influence possible and if such an influence can bear a risk for the AIMD wearers. However, there has been no attempt to study the physical mechanism nor to develop a model of how and under which conditions magnetic fields can influence pacemakers and defibrillators and how they could be disarmed by technological means. It is too often assumed that interference of AIMD with ESS is inevitable. Exogenous signals of similar intensity and rhythm to heart signals can be misinterpreted and, thus, confuse the implant. Important for the interference coupling mechanism is the differentiation between a "unipolar" and a "bipolar" system. With respect to magnetic fields, the left side implanted pacemaker is the most unfavorable case as the lead forms approximately a semicircular area of maximum 225 cm2 into which a voltage can be induced. This assumption yields an interference coupling model that can be expressed by simple mathematics. The worst-case conditions for induced interference voltages are a coupling area of 225 cm2 that is representative for a large human, a homogeneous magnetic field perpendicular to the area formed by the lead, and a unipolar ventricular pacemaker system that is implanted on the left side of the thorax and has the highest interference sensitivity. In bipolar systems the fields must be 17 times larger when compared to a unipolar system to have the same effect. The magnetic field for interfering with ICDs must be 1.7 stronger than that of the most sensitive unipolar pacemaker. The lowest interference thresholds measured over the last 10 years in the low frequency range (16 2/3 Hz,24 kHz) together with thresholds > 24 kHz that were supplied by the CETECOM study are listed. Both sets of data together with the coupling model, allow for judging which fields of ESSs could influence AIMDs. From measurements at gate antennas, it is possible to derive a "maximum allowed field" curve over the whole frequency range, below which no interference will occur. Comparison of data from literature with these maximum allowed fields confirm the correctness of the calculations. Thus, it is possible to predict interference situations in gates if the magnetic field is known. If all future pacemakers were to have the immunity against interference of the better 50% of today's pacemakers, the magnetic field ceiling values could be at least four times higher. The same is true if the ventricular sensitivity is routinely set at 7 mV. Pacemaker manufacturers should consider filter improvement with modern technology, but gate manufacturers should not claim the privilege of being out of bounds. [source]