Similar Genes (similar + gene)

Distribution by Scientific Domains


Selected Abstracts


Identification of an osteopontin-like protein in fish associated with mineral formation

FEBS JOURNAL, Issue 17 2007
Vera G. Fonseca
Fish has been recently recognized as a suitable vertebrate model and represents a promising alternative to mammals for studying mechanisms of tissue mineralization and unravelling specific questions related to vertebrate bone formation. The recently developed Sparus aurata (gilthead seabream) osteoblast-like cell line VSa16 was used to construct a cDNA subtractive library aimed at the identification of genes associated with fish tissue mineralization. Suppression subtractive hybridization, combined with mirror orientation selection, identified 194 cDNA clones representing 20 different genes up-regulated during the mineralization of the VSa16 extracellular matrix. One of these genes accounted for 69% of the total number of clones obtained and was later identified as theS. aurata osteopontin-like gene. The 2138-bp full-length S. aurata osteopontin-like cDNA was shown to encode a 374 amino-acid protein containing domains and motifs characteristic of osteopontins, such as an integrin receptor-binding RGD motif, a negatively charged domain and numerous post-translational modifications (e.g. phosphorylations and glycosylations). The common origin of mammalian osteopontin and fish osteopontin-like proteins was indicated through an in silico analysis of available sequences showing similar gene and protein structures and was further demonstrated by their specific expression in mineralized tissues and cell cultures. Accordingly, and given its proven association with mineral formation and its characteristic protein domains, we propose that the fish osteopontin-like protein may play a role in hard tissue mineralization, in a manner similar to osteopontin in higher vertebrates. [source]


The mosquito ribonucleotide reductase R2 gene: ultraviolet light induces expression of a novel R2 variant with an internal amino acid deletion

INSECT MOLECULAR BIOLOGY, Issue 3 2004
G. Jayachandran
Abstract Using RT-PCR, we examined expression of the ribonucleotide reductase R2 subunit (RNR-R2) in Aedes albopictus mosquito cells after treatment with ultraviolet light (UV). In control cells, a predominant band at 1.2 kb corresponded to the full-length cDNA. A smaller 650 bp band was unique to UV-treated cells. Sequence analysis showed that the 650 bp band encoded a protein with an internal deletion of 179 amino acids, relative to Ae. albopictus RNR-R2. The N-terminal twenty amino acids were identical between AalRNR-R2 and Aal,R2; downstream of the deletion, the proteins differed at only four residues. In Aal,R2, the internal deletion spanned five residues critical to RNR-R2 enzymatic activity, including a key tyrosine residue that generates an essential free radical. The full-length 46 kDa and truncated 25 kDa RNR-R2 proteins were shown to be expressed on Western blots, and to differ in their subcellular localization. Similarly, expression of the two proteins was differentially regulated during the cell cycle, and expression of Aal,R2 predominated after UV treatment. Aal,R2 resembled a human RNR-R2 variant called p53R2, which was induced by agents that damage DNA. As was the case with p53R2 and its antisense RNA, levels of Aal,R2 were diminished after treatment of mosquito cells with RNAi corresponding to p53 from Drosophila melanogaster. Examination of the AalRNR-R2 homologue in the Anopheles gambiae genome suggested that Aal,R2 resulted from precise splicing between Exons 1, 4 and 5, eliminating Exons 2 and 3. The likelihood that Aal,R2 is a non-enzymatic, functional participant in DNA metabolism is suggested by enhancement of DNA repair in an in vitro system and by the presence of a similar gene (rnr4) in yeast. [source]


REVIEW: A comparison of selected quantitative trait loci associated with alcohol use phenotypes in humans and mouse models

ADDICTION BIOLOGY, Issue 2 2010
Cindy L. Ehlers
ABSTRACT Evidence for genetic linkage to alcohol and other substance dependence phenotypes in areas of the human and mouse genome have now been reported with some consistency across studies. However, the question remains as to whether the genes that underlie the alcohol-related behaviors seen in mice are the same as those that underlie the behaviors observed in human alcoholics. The aims of the current set of analyses were to identify a small set of alcohol-related phenotypes in human and in mouse by which to compare quantitative trait locus (QTL) data between the species using syntenic mapping. These analyses identified that QTLs for alcohol consumption and acute and chronic alcohol withdrawal on distal mouse chromosome 1 are syntenic to a region on human chromosome 1q where a number of studies have identified QTLs for alcohol-related phenotypes. Additionally, a QTL on human chromosome 15 for alcohol dependence severity/withdrawal identified in two human studies was found to be largely syntenic with a region on mouse chromosome 9, where two groups have found QTLs for alcohol preference. In both of these cases, while the QTLs were found to be syntenic, the exact phenotypes between humans and mice did not necessarily overlap. These studies demonstrate how this technique might be useful in the search for genes underlying alcohol-related phenotypes in multiple species. However, these findings also suggest that trying to match exact phenotypes in humans and mice may not be necessary or even optimal for determining whether similar genes influence a range of alcohol-related behaviors between the two species. [source]


Characterization of R-body genetic determinants in Caedibacter caryophilus a symbiont of Paramecium caudatum: preliminary results

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2005
MARTINA SCHRALLHAMMER
Refractile inclusion bodies, called R-bodies were observed within the cells of some bacterial strains. They are protein ribbons, which are typically coiled into cylindrical structures. They are produced by members of the genus Caedibacter, gram-negative rod-shaped endosymbionts of paramecia and e.g. the free-living bacteria Hydrogenophaga taeniospiralis and Acidovorax avenae. The phylogenetic relationship even between the members of the genus Caedibacter is quite low: C. taeniospiralis belongs to the Gammaproteobacteria and is related to Francisella tularensis, C. caryophilus is affiliated with the Alphaproteobacteria and clusters with the obligate endosymbiont Holospora. In the case of C. taeniospiralis 51, the genetic determinants of R-body synthesis are located on a plasmid, whereas in other strains like 7 and 562 it looks like phage particles are involved in their production. In the present study, we investigated C. caryophilus, endosymbiont of Paramecium caudatum. Separation of C. caryophilus cells was performed by PercollÔ density gradient centrifugation. The isolated DNA was separated by pulsed-field gel electrophoresis and it was possible to visualize several bands referring to one or more extrachromosomal elements. A small gene library of these extrachromosomal elements was constructed and we already identified transposition-related genes; interestingly, similar genes were reported also on the plasmid of C. taeniospiralis 51. [source]


Immunoregulatory Activity, Biochemistry, and Phylogeny of Ovine Uterine Serpin

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 5 2001
MORGAN R. PELTIER
PROBLEM: During pregnancy, the endometrium of the ewe secretes a progesterone-induced member of the serpin superfamily of serine proteinase inhibitors called ovine uterine serpin (OvUS) that has immunosuppressive properties. METHOD: Review of the literature. RESULTS AND CONCLUSIONS: OvUS inhibits a wide variety of immune responses, including mixed lymphocyte reaction, mitogen-stimulated lymphocyte proliferation, and T cell-dependent antibody production. Recent data have suggested that OvUS functions by inhibiting protein kinase C and interleukin-2-mediated events. OvUS and similar genes present in cattle and pigs diverged from other serpins prior to the divergence of artiodactyls. Since this time, the serpins have apparently undergone adaptive evolution that has led to a conformational state and biological functions distinct from prototypical serpins. Thus, it is likely that these proteins have an important role in the reproductive biology of Artiodactyla. Several lines of evidence suggest that, in sheep, OvUS functions to mediate the immunosuppressive effects of progesterone and prevent immunological rejection of the fetal allograft. [source]


Differential Chemokine and Chemokine Receptor Gene Induction by Ischemia, Alloantigen, and Gene Transfer in Cardiac Grafts

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2003
Dongmei Chen
Transplantation of allogeneic grafts presents several challenges to the innate and adaptive immune systems including chemokine leukocyte recruitment, activation, and effector function. We defined the chemokines and receptors induced by the transplant procedure/ischemia injury, alloantigen and gene transfer vector administration in murine cardiac grafts. E1, E3 deleted AdRSV,gal was transferred into grafts at the time of transplantation, grafts were harvested after 1,14 days, and a pathway-specific cDNA array was used to evaluate the levels of 67 chemokine and chemokine receptor genes. Transplantation resulted in ischemic injury and induction of a number of similar genes in both the syngeneic and allogeneic grafts, such as CXCL1 and CXCL5, which increased dramatically on day 1 and returned rapidly to baseline in the syngeneic grafts. Alloantigen stimulated the adaptive immune response and induced the presence of more inflammatory genes within the grafts, particularly at later time points. The adenovirus vector induced a broader panel of genes, among them potent inflammatory chemokines CXCL9 and CXCL10, that are induced earlier or more strongly compared with alloantigen stimulation alone. As alloantigen and adenovirus vectors both induce similar sets of genes, targeting these molecules may not only inhibit alloimmunity, but also enhance the utility of the gene transfer vector. [source]


Genomics and bioinformatics in undergraduate curricula: Contexts for hybrid laboratory/lecture courses for entering and advanced science students

BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, Issue 1 2010
Louise Temple
Abstract Emerging interest in genomics in the scientific community prompted biologists at James Madison University to create two courses at different levels to modernize the biology curriculum. The courses are hybrids of classroom and laboratory experiences. An upper level class uses raw sequence of a genome (plasmid or virus) as the subject on which to base the experience of genomic analysis. Students also learn bioinformatics and software programs needed to support a project linking structure and function in proteins and showing evolutionary relatedness of similar genes. An optional entry-level course taken in addition to the required first-year curriculum and sponsored in part by the Howard Hughes Medical Institute, engages first year students in a primary research project. In the first semester, they isolate and characterize novel bacteriophages that infect soil bacteria. In the second semester, these young scientists annotate the genes on one or more of the unique viruses they discovered. These courses are demanding but exciting for both faculty and students and should be accessible to any interested faculty member. [source]