Home About us Contact | |||
Silver Birch (silver + birch)
Terms modified by Silver Birch Selected AbstractsMortality in seedling populations of Silver Birch: genotypic variation and herbivore effectsFUNCTIONAL ECOLOGY, Issue 5 2003K. Prittinen Summary 1Variation among mature plants reflects mortality that has occurred during the seedling phase. Our earlier studies have shown variation in resistance to insect and vole herbivory among Silver Birch genotypes that represent variation in a naturally regenerated birch stand. The aim of this study was to examine whether seedling mortality varied among these genotypes, and whether insect and field vole herbivory affected mortality. The 20 genotypes studied competed with each other in dense stands, which were randomly assigned to insect and vole exposure and fertilization treatments. 2Insect herbivory and fertilization increased mortality significantly (by 98 and 68%, respectively). The fertilization effect was probably due to accelerated self-thinning among fast-growing seedlings. Although vole browsing removed considerable biomass, it did not affect seedling mortality. 3Mortality was context-dependent. The genotypes differed both in their overall mortality and in their response to insect herbivory. However, the effect of insects on a genotype depended more on its success in competition than on its resistance: even small amounts of feeding were detrimental to short, shaded seedlings, while taller seedlings in the canopy were affected less, although they were eaten more. 4It is concluded that moderate levels of insect herbivory can increase seedling mortality considerably. Furthermore, herbivory can change the genetic structure of birch populations through selective mortality, which in dense stands is dependent on competitive traits. [source] Dendrogeomorphic reconstruction of past debris-flow activity using injured broad-leaved treesEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2010Estelle Arbellay Abstract Tree-ring records from conifers have been regularly used over the last few decades to date debris-flow events. The reconstruction of past debris-flow activity was, in contrast, only very rarely based on growth anomalies in broad-leaved trees. Consequently, this study aimed at dating the occurrence of former debris flows from growth series of broad-leaved trees and at determining their suitability for dendrogeomorphic research. Results were obtained from gray alder (Alnus incana (L.) Moench), silver birch and pubescent birch (Betula pendula Roth and Betula pubescens Ehrh.), aspen (Populus tremula L.), white poplar, black poplar and gray poplar (Populus alba L., Populus nigra L. and Populus x canescens (Ait.) Sm.), goat willow (Salix caprea L.) and black elder (Sambucus nigra L.) injured by debris-flow activity at Illgraben (Valais, Swiss Alps). Tree-ring analysis of 104 increment cores, 118 wedges and 93 cross-sections from 154 injured broad-leaved trees allowed the reconstruction of 14 debris-flow events between AD 1965 and 2007. These events were compared with archival records on debris-flow activity at Illgraben. It appears that debris flows are very common at Illgraben, but only very rarely left the channel over the period AD 1965,2007. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of six patterns of debris-flow routing and led to the determination of preferential breakout locations of events. The results of this study demonstrate the high potential of broad-leaved trees for dendrogeomorphic research and for the assessment of the travel distance and lateral spread of debris-flow surges. Copyright © 2010 John Wiley & Sons, Ltd. [source] Do elevated atmospheric CO2 and O3 affect food quality and performance of folivorous insects on silver birch?GLOBAL CHANGE BIOLOGY, Issue 3 2010PETRI A. PELTONEN Abstract The individual and combined effects of elevated CO2 and O3 on the foliar chemistry of silver birch (Betula pendula Roth) and on the performance of five potential birch-defoliating insect herbivore species (two geometrid moths, one lymantrid moth and two weevils) were examined. Elevated CO2 decreased the water concentration in both short- and long-shoot leaves, but the effect of CO2 on the concentration of nitrogen and individual phenolic compounds was mediated by O3 treatment, tree genotype and leaf type. Elevated O3 increased the total carbon concentration only in short-shoot leaves. Bioassays showed that elevated CO2 increased the food consumption rate of juvenile Epirrita autumnata and Rheumaptera hastata larvae fed with short- and long-shoot leaves in spring and mid-summer, respectively, but had no effect on the growth of larvae. The contribution of leaf quality variables to the observed CO2 effects indicate that insect compensatory consumption may be related to leaf age. Elevated CO2 increased the food preference of only two tested species: Phyllobius argentatus (CO2 alone) and R. hastata (CO2 combined with O3). The observed stimulus was dependent on tree genotype and the measured leaf quality variables explained only a portion of the stimulus. Elevated O3 decreased the growth of flush-feeding young E. autumnata larvae, irrespective of CO2 concentration, apparently via reductions in general food quality. Therefore, the increasing tropospheric O3 concentration could pose a health risk for juvenile early-season birch folivores in future. In conclusion, the effects of elevated O3 were found to be detrimental to the performance of early-season insect herbivores in birch whereas elevated CO2 had only minor effects on insect performance despite changes in food quality related foliar chemistry. [source] Adult large pine weevils Hylobius abietis feed on silver birch Betula pendula even in the presence of conifer seedlingsAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2006Riitta Toivonen Abstract 1,The feeding preference of the adult pine weevil Hylobius abietis (L.) (Coleoptera: Curculionidae) for Betula pendula Roth was studied in no-choice and paired-choice feeding experiments. 2,In the first no-choice test, large quantities of silver birch bark in Petri dishes were consumed; on average, the daily consumption of each weevil was 67 mm2. 3,In the second no-choice test, the weevils were offered 1-year-old silver birch seedlings for 6 days. Initially, the weevils fed mostly on the stem bases; later, they moved upward to feed on other parts of the stems. In addition to the main shoots, scars caused by gnawing were also found on leaf bases, blades, veins and petioles. Feeding resulted in the death of the main stems in 15% of the seedlings. 4,In the paired-choice tests, the conifers were preferred to silver birch, even though a large amount of silver birch was also consumed in the presence of conifers. 5,In the paired-choice tests, equal amounts of Scots pine and Norway spruce were always consumed. When hybrid aspen was offered, only small amounts were gnawed. [source] Assessment of UV Biological Spectral Weighting Functions for Phenolic Metabolites and Growth Responses in Silver Birch SeedlingsPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2009Titta Kotilainen In research concerning stratospheric ozone depletion, action spectra are used as biological spectral weighting functions (BSWFs) for describing the effects of UV radiation on plant responses. Our aim was to evaluate the appropriateness of six frequently used BSWFs that differ in effectiveness with increasing wavelength. The evaluation of action spectra was based on calculating the effective UV radiation doses according to 1,2) two formulations of the generalized plant action spectrum, 3) a spectrum for ultraviolet induced erythema in human skin, 4) a spectrum for the accumulation of a flavonol in Mesembryanthemum crystallinum, 5) a spectrum for DNA damage in alfalfa seedlings and 6) the plant growth action spectrum. We monitored effects of UV radiation on the concentration of individual UV absorbing metabolites and chlorophyll concentrations in leaves and growth responses of silver birch (Betula pendula) seedlings. Experiments were conducted outdoors using plastic films attenuating different parts of the UV spectrum. Chlorophyll concentrations and growth were not affected by the UV treatments. The response to UV radiation varied between and within groups of phenolics. In general, the observed responses of phenolic groups and individual flavonoids were best predicted by action spectra extending into the UV-A region with moderate effectiveness. [source] Northern Environment Predisposes Birches to Ozone DamagePLANT BIOLOGY, Issue 2 2007E. Oksanen Abstract: Ozone sensitivity of silver birch (Betula pendula Roth) has been thoroughly investigated since early 1990,s in Finland. In our long-term open-field experiments the annual percentage reduction in basal diameter and stem volume increment were the best non-destructive growth indicators for ozone impact when plotted against AOTX. Remarkable differences in defence strategies, stomatal conductance, and defence compounds (phenolics), clearly indicate that external exposure indices are ineffective for accurate risk assessment for birch. For flux-based approaches, site-specific values for gmax and gdark are necessary, and determinants for detoxification capacity, ageing of leaves, and cumulative ozone impact would be needed for further model development. Increasing CO2 seems to counteract negative ozone responses in birch, whereas exposure to springtime frost may seriously exacerbate ozone damage in northern conditions. Therefore, we need to proceed towards incorporating the most important climate change factors in any attempts for ozone risk assessment. [source] Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozonePLANT CELL & ENVIRONMENT, Issue 6 2010SARI KONTUNEN-SOPPELA ABSTRACT Long-term effects of elevated CO2 and O3 concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2× ambient CO2 and/or O3 in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO2 and O3. Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO2 and O3. Elevated CO2 delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O3 advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO2 only temporarily alleviated the negative effects of O3. Gene expression data alone were insufficient to explain the O3 response in birch, and additional physiological and biochemical data were required to understand the true O3 sensitivity of these clones. [source] Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2 - and O3 - enriched atmospheresPLANT CELL & ENVIRONMENT, Issue 4 2004H. EICHELMANN ABSTRACT Two silver birch (Betula pendula Roth) clones K1659 and V5952 were grown in open-top chambers over 3 years (age 7,9 years). The treatments were increased CO2 concentration (+CO2, 72 Pa), increased O3 concentration (+O3, 2 × ambient O3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO2 + O3). Thirty-seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer-operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78,90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b6f, Rubisco specificity and Km (CO2) were not influenced by treatments. Net photosynthetic rate responded to +CO2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO2 in clones K1659 and V5952, respectively. The elevated O3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O3 had less effect in the presence of +CO2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress. [source] |