Silt Content (silt + content)

Distribution by Scientific Domains


Selected Abstracts


Storage, patterns and controls of soil organic carbon in the Tibetan grasslands

GLOBAL CHANGE BIOLOGY, Issue 7 2008
YUANHE YANG
Abstract The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001,2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m,2. The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. [source]


Sediment infiltration traps: their use to monitor salmonid spawning habitat in headwater tributaries of the Cascapédia River, Québec

HYDROLOGICAL PROCESSES, Issue 20 2005
André E. Zimmermann
Abstract Sediment infiltration can clog salmon nests and reduce egg survival. As a countermeasure, environmental managers often deploy infiltration traps to monitor sediment infiltration. Traps provide a repeatable means of measuring infiltration and enable comparisons to be made between sites. Results from infiltration rates measured with traps have also been used to estimate infilling rates into salmon nests. Application of these data is questionable, as the composition of the bed and the amount of fine sediment within the bed is known to affect infiltration rates. Thus, infiltration rates measured with infiltration traps may differ from the infiltration rates occurring in redd and riffle gravels. To examine how relationships between sediment infiltration rates varied between four watersheds, we continuously monitored suspended sediment transport, shear stress and infiltration rates at four sites over 5 months. We also compared infiltration rates measured with infiltration traps with changes in the hydraulic conductivity and subsurface grain size distribution of adjacent artificially constructed salmon nests and natural riffle gravels. Among the four watersheds, clear differences in sediment infiltration rates were observed. The differences correlated with the subsurface silt content but no strong relationship existed between land-use or basin physiography/geology. Despite observing an average of 30 kg m,2 of sediment finer than 2 mm being deposited in the infiltration traps during the study, no change in redd or riffle substrate was observed. If the deposition rates measured with the traps reflect the processes in redds, enough sediment would have been deposited to inhibit egg emergence. However, no reduction in egg survival to the eyed stage was observed. In summary, our results show that infiltration traps with clean gravels can be used to detect intersite differences in sediment transport regimes. Extrapolations of sediment infiltration rates measured with such collectors to estimate infiltration rates in redds or riffles is, however, flawed. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Comparison of critical limits for crop plant growth based on different indicators for the state of soil compaction

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2010
Manfred Kaufmann
Abstract Soil compaction affects physical soil condition, in particular aeration, soil strength, and water availability and has adverse effects on plant growth. Bulk density is the most frequently used indicator to describe the state of compaction of a soil. However, this parameter lacks a direct functional relationship with plant growth. Various indicators have been proposed to simultaneously characterize the state of compaction of agricultural soil and its suitability for plant growth. This paper examines and compares the critical limits for crop plant growth based on three of these indicators: packing density, least limiting water range, and S parameter (the latter is the slope of the soil water-retention curve in the inflexion point). In a first step, we reviewed the literature for published optimum and limiting values of bulk density and found that these values were highly dependent on clay and silt content. Converting them into corresponding values of packing density (composite index of bulk density and clay content), a value of 1.70 was found to effectively distinguish between optimum and limiting soil conditions for plant growth. In a second step, the packing density of 59 soil horizons sampled in N Switzerland was compared with the least limiting water range and the S parameter of these soil horizons (both determined by means of pedotransfer functions taken from the literature). A linear relationship between the three parameters was found, which allowed for a comparison of the published critical limits for plant growth based on these parameters. The critical limits of the three indicators, which had been postulated independently of each other in the literature, were found to agree well with each other. This means that all of them could equally be used to describe the compaction state of a soil and its physical suitability for plant growth. However, the proposed critical limits of packing density, least limiting water range, and S parameter still need further validation by field studies relating plant growth to soil compaction. [source]


Biomechanical warfare in ecology; negative interactions between species by habitat modification

OIKOS, Issue 5 2007
B. K. Van Wesenbeeck
Since the introduction of the term ecosystem engineering by Jones et al. many studies have focused on positive, facilitative interactions caused by ecosystem engineering. Much less emphasis has been placed on the role of ecosystem engineering in causing negative interactions between species. Here, we report on negative interactions between two well known ecosystem engineers occurring at the interface of salt marsh and intertidal flat (i.e. common cordgrass Spartina anglica and lugworms Arenicolamarina), via modification of their joint habitat. A field survey indicated that, although both species share a common habitat, they rarely co-occur on small spatial scales (<1 m). Experiments in the field and in mesocosms reveal that establishment of small Spartina plants is inhibited in Arenicola -dominated patches because of low sediment stability induced by the lugworms. In turn, Arenicola establishment in Spartina -dominated patches is limited by high silt content, compactness and dense rooting of the sediment caused by Spartina presence. Our results show that negative interactions by modification of the environment can result in rapid mutual exclusion, particularly if adverse effects of habitat modification are strong and if both species exhibit positive feedbacks. This illustrates the potential for negative interactions via the environment to affect community composition. [source]


Recovery of sandy beach and maritime forest vegetation on Phuket Island (Thailand) after the major Indian Ocean tsunami of 2004

APPLIED VEGETATION SCIENCE, Issue 2 2009
D. Hayasaka
Abstract Question: How rapidly has the sandy beach and maritime forest vegetation on Phuket recovered and regenerated after the impact of the major Indian Ocean tsunami of 2004? What are the characteristics of sandy beach species for regenerating their populations and the invasion patterns of originally non-sandy beach species or other newcomers after the tsunami? Location: Phuket Island, southern Thailand. Methods: Species composition of beaches was studied on the same research plots 6 months before and 9 months after the tsunami. The changes in individual species cover before and after the tsunami were determined by ,2 tests. Change in community composition was analysed by detrended correspondence analysis. The relationship between species and environmental factors was analysed by canonical correspondence analysis. Results: The sites disturbed by the tsunami were often invaded by annuals, especially grasses and asteraceous plants, rather than by perennials. In contrast, species with clonal growth by stolons decreased significantly. Factors determining the species habitat differences were soil hardness (penetration resistance of sandy soil), per cent silt content, soil water content and beach management. Habitat differences among originally non-sandy beach herbaceous species that expanded their population or moved to the coast after the disaster were defined by sand accretion or erosion caused by the tsunami. Many sandy beach herbaceous communities changed into Dactyloctenium aegyptium communities because of the tsunami were originally constituted by non-sandy beach D. aegyptium with Cenchrus echinatus. Although the forest floors of most maritime forests were invaded by originally non-sandy beach Tridax procumbens, Eleusine indica or D. aegyptium because of the tsunami, this did not result in a change in the vegetation unit, because species' loss was restricted to the understorey. In time, these forests will recover their previous community composition. Conclusions: Our results suggest that originally non-sandy beach native species invaded the disturbed beaches rapidly after the tsunami but their habitats differ. Sites where sand accumulated on a beach because of the tsunami were invaded by D. aegyptium and E. indica, whereas soil erosion permitted invasion by Digitania adscendens. Tridax procumbens establishes rapidly on wet sites with hard soil, high per cent silt content and low beach management pressure. Sandy beach species with subterranean long rhizomes are strongly tolerant of such disasters. We concluded that the species composition of the beaches disturbed by a temporary large disaster is determined by dormancy and growth forms, with radicoid form being influential. [source]