Silicon Nitride Ceramics (silicon + nitride_ceramics)

Distribution by Scientific Domains


Selected Abstracts


Microstructure and Mechanical Properties of Lu2O3 -Doped Porous Silicon Nitride Ceramics Using Phenolic Resin as Pore-Forming Agent

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 3 2010
Xiaowei Yin
The joint process consisting of pressureless sintering and chemical vapor infiltration (CVI) was developed to prepare porous Si3N4 ceramics with controlled microstructure. Lu2O3 and phenolic resin acted as sintering aid and pore-forming agent, respectively. The 5 wt% Lu2O3 -doped ceramics using 12,57 vol% phenolic resin attained a porosity ranging from 46% to 53%. With increasing the resin content, the average pore size increased from 1 to 2 ,m. The porous ceramic infiltrated with CVI Si3N4 had an improved microstructure. The decreased pore size and porosity led to an increase in flexural strength, and the densified surface led to an improved surface hardness. [source]


Spark Plasma Sintered Silicon Nitride Ceramics with High Thermal Conductivity Using MgSiN2 as Additives

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2009
Gui-hua Peng
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°,1600°C for 3,12 min, using ,-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%,-Si3N4 phase left in the sintered material. ,-Si3N4 was completely transformed to ,-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K),1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate ,-Si3N4 ceramics with high thermal conductivity when appropriate additives are used. [source]


The Relationship Between Multiple Scratch Tests and Wear Behavior of Hot-Pressed Silicon Nitride Ceramics with Various Rare-Earth Additive Systems

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2008
Hideki Hyuga
The wear behavior of Si3N4 ceramics sintered with various rare earth additives was studied for nonlubricated sliding under different conditions, and scratch tests carried out in an attempt to correlate the wear behavior. When multiple scratch testing is used the results can be used to indicate the initial wear behavior under fracture-dominated wear of the materials. The additive system used in the sintering of the Si3N4 ceramics affected the specific wear rate under nonlubricated sliding conditions, and under high load conditions, where fracture is dominant, the specific wear rate was shown to increase in samples sintered with lutetium as a consequence of a strong bonding strength between the grains and grain boundary resulting in a higher degree of brittle fracture. [source]


Biomorphic Silicon Nitride Ceramics with Fibrous Morphology Prepared by Sol Infiltration and Reduction,Nitridation

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2007
Min Luo
Biomorphic silicon nitride (Si3N4) ceramics with fibrous morphology were fabricated by combining sol,gel infiltration with carbothermal reduction nitridation from wood precursor. Y2O3 -incorporated silica sol was used as the infiltrated solution to promote the formation of fibrous Si3N4 grain at 1600°C under high nitrogen pressure (0.6 MPa). The influence of sintering conditions (additive and temperature) on the phase composition and microstructure of sintering bodies was analyzed, and the reaction mechanism is discussed. [source]


Microstructure and Mechanical Properties of Silicon Nitride Ceramics with Controlled Porosity

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2002
Jian-Feng Yang
Porous silicon nitride ceramic with a porosity from 0,0.3 was fabricated by partial hot-pressing of a powder mixture of ,-Si3N4 and 5 wt% Yb2O3 as sintering additive. Irrespective of the porosity, the samples exhibited almost the same microstructural features including grain size, grain aspect ratio, and pore size. Porosity dependences of Young's modulus, flexural strength, and fracture toughness (KIC) were investigated. All these properties decreased with increasing porosity. However, because of the fibrous microstructure, the decreases of flexural strength and fracture toughness were moderate compared with the much greater decrease of Young's modulus. Thus, the strain tolerance (fracture strength/Young's modulus) increased with increasing porosity. The critical energy release rate also increased slightly with an increasing volume fraction of porosity to 0.166 and remained at the same level with that of the dense sample when the porosity was 0.233. They decreased as porosity increased further. [source]


High-Temperature Oxidation Behavior of High-Purity ,-, ,-, and Mixed Silicon Nitride Ceramics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2002
M. Backhaus-Ricoult
High-temperature oxidation behavior, microstructural evolution, and oxidation kinetics of additive-free ,-, ,-, and mixed silicon nitride ceramics is investigated. The oxidation rate of the ceramics depends on the allotropic ratio; best oxidation resistance is achieved for ceramics rich in ,-phase. Variations in the oxidation kinetics are directly related to average grain size and glass distribution in the oxidation scale. The oxygen contents incorporated into the Si3N4 phase before its dissolution at the oxidation front affects the local glass composition and thereby yields nucleation and growth rates of SiO2 crystallites within the glass phase and a final oxidation scale microstructure, which depend on the incorporated oxygen contents. For the ,-polymorph, the dynamic oxygen solubility is found to remain negligible; therefore, a nitrogen-rich glass forms at the oxidation front, which promotes devitrification and yields a scale with small grain size and thin intergranular glass films. ,-Si3N4 is observed to form oxygen-rich solid solutions on oxidation, which are in contact with silicon oxynitride or oxygen-rich glass. Nucleation of cristobalite in the latter is sluggish, yielding coarse-grained oxidation scales with thick intergranular glass film. [source]


Further Improvement in Mechanical Properties of Highly Anisotropic Silicon Nitride Ceramics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2000
Hisayuki Imamura
Si3N4ceramics were fabricated by tape casting of a raw-powder slurry seeded with three types of rodlike ,-Si3N4particles. The effects of seed size on the microstructure and mechanical properties of the sintered specimens were investigated. All the seeded and tape-cast silicon nitrides presented an anisotropic microstructure, where the elongated grains grown from seeds were preferentially oriented parallel to the casting direction. The orientation degree of these grains, f0, was affected by seed size, and small-seed addition led to the highest f0value. This material exhibited high bending strength (,1.4 GPa) and high fracture toughness (,12 MPa.m1/2) in the direction normal to the grain alignment, which were attributed to the highly anisotropic and fine microstructure. [source]


Spark Plasma Sintered Silicon Nitride Ceramics with High Thermal Conductivity Using MgSiN2 as Additives

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2009
Gui-hua Peng
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°,1600°C for 3,12 min, using ,-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%,-Si3N4 phase left in the sintered material. ,-Si3N4 was completely transformed to ,-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K),1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate ,-Si3N4 ceramics with high thermal conductivity when appropriate additives are used. [source]


Sintered Reaction-Bonded Silicon Nitride with High Thermal Conductivity and High Strength

INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 2 2008
You Zhou
Sintered reaction-bonded silicon nitride (SRBSN) materials were prepared from a high-purity Si powder doped with Y2O3 and MgO as sintering additives by nitriding at 1400°C for 8 h and subsequently postsintering at 1900°C for various times ranging from 3 to 24 h. Microstructures and phase compositions of the nitrided and the sintered compacts were characterized. The SRBSN materials sintered for 3, 6, 12, and 24 h had thermal conductivities of 100, 105, 117, and 133 W/m/K, and four-point bending strengths of 843, 736, 612, and 516 MPa, respectively. Simultaneously attaining thermal conductivity and bending strength at such a high level made the SRBSN materials superior over the high-thermal conductivity silicon nitride ceramics that were prepared by sintering of Si3N4 powder in our previous works. This study indicates that the SRBSN route is a promising way of fabricating silicon nitride materials with both high thermal conductivity and high strength. [source]


Development of a Self-Forming Ytterbium Silicate Skin on Silicon Nitride by Controlled Oxidation

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2002
Seung Kun Lee
A dense and uniform polycrystalline ytterbium silicate skin on silicon nitride ceramics was developed by a controlled oxidation process to improve the hot corrosion resistance of silicon nitride. The process consists of purposely oxidizing the silicon nitride by heating it at high temperatures. It was found that the ytterbium silicate phase was formed as an oxidation product on the surface of the silicon nitride when it was exposed to air at temperatures above 1250°C. The volume fraction of ytterbium silicate compared with that of SiO2 on the silicon nitride surface increased with increasing oxidation time and temperature. The formation and growth of ytterbium silicate on the surface of silicon nitride is attributed to a nucleation and growth mechanism. Ultimately, a dense and uniform ytterbium silicate skin with 3,4 ,m of skin thickness was obtained by oxidation at 1450°C for 24 h. The ytterbium silicate layer, formed by oxidation of the silicon nitride, is associated with the reaction of SiO2 on the surface of silicon nitride with Yb2O3 introduced in the silicon nitride as a sintering additive. Preliminary tests showed that the ytterbium silicate skin appears to protect silicon nitride from hot corrosion. No observable evidence of a reaction between the skin and molten Na2SO4 was found when it was exposed to molten Na2SO4 at 1000°C for 30 min. [source]


High-Temperature Oxidation Behavior of High-Purity ,-, ,-, and Mixed Silicon Nitride Ceramics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2002
M. Backhaus-Ricoult
High-temperature oxidation behavior, microstructural evolution, and oxidation kinetics of additive-free ,-, ,-, and mixed silicon nitride ceramics is investigated. The oxidation rate of the ceramics depends on the allotropic ratio; best oxidation resistance is achieved for ceramics rich in ,-phase. Variations in the oxidation kinetics are directly related to average grain size and glass distribution in the oxidation scale. The oxygen contents incorporated into the Si3N4 phase before its dissolution at the oxidation front affects the local glass composition and thereby yields nucleation and growth rates of SiO2 crystallites within the glass phase and a final oxidation scale microstructure, which depend on the incorporated oxygen contents. For the ,-polymorph, the dynamic oxygen solubility is found to remain negligible; therefore, a nitrogen-rich glass forms at the oxidation front, which promotes devitrification and yields a scale with small grain size and thin intergranular glass films. ,-Si3N4 is observed to form oxygen-rich solid solutions on oxidation, which are in contact with silicon oxynitride or oxygen-rich glass. Nucleation of cristobalite in the latter is sluggish, yielding coarse-grained oxidation scales with thick intergranular glass film. [source]