Home About us Contact | |||
Silica Deposition (silica + deposition)
Selected AbstractsAbiotic,biotic controls on the origin and development of spicular sinter: in situ growth experiments, Champagne Pool, Waiotapu, New ZealandGEOBIOLOGY, Issue 2 2005K. M. HANDLEY Abiotic,biotic mechanisms of microstromatolitic spicular sinter (geyseritic) initiation and development were elucidated by in situ growth experiments at Champagne Pool (75 °C, pH 5.5). Siliceous sinter formed subaerially on glass slides placed along the margin of the hot spring. Environment,silica,microbe interactions were revealed by periodic collections of incremental sinter growth that formed under a range of environmental conditions including quiescence vs. wave turbulence, and wind,evaporation vs. steam,condensation. Sinter surfaces were intermittently colonized by voluminous networks of filamentous micro-organisms, with submicron diameters, that provided an extensive surface area for silica deposition. The subaerial distribution of sinter and its textures reflected micron- to centimetre-scale differences in environmental conditions, particularly relating to the balance between wave-supplied dissolved silica and its precipitation, forced by cooling and evaporation. A continuum of sinter textures formed, representing rates of silica precipitation that either out-paced biofilm growth or regulated the structural development of biofilms, and hence also the nature of microbially templated sinter. Massive laminae of porous, filamentous-network sinter and/or fenestrae (up to 10's of microns in thickness and diameter) formed at relatively low rates of silica deposition (approximately 0.2 mg slide,1 day,1). At high rates (>1.9 mg slide,1 day,1), densely packed, granular or nonporous sinter formed, with filament networks disappearing into the siliceous matrix and becoming imperceptible under scanning electron microscopy (SEM). Furthermore, spicules were nucleated by filamentous microcolonies, where their discrete conical morphologies were preserved by accretion of thin sinter laminae. Microstromatolitic spicular growth ensued at fluctuating low to high rates of silica precipitation. Greater apical sinter build-up, and hence upward polarity, resulted from focused microbial recolonization and progressively greater subaerial exposure at microspicule tips. The biogenic origin of spicular sinter at Champagne Pool clearly demonstrates that micron-scale biofilms, displaying self-organization patterns common to both biofilms and microbial mats, can be an essential factor in shaping characteristic centimetre-scale sinter macrostructures. These findings suggest that a biogenic origin for geyserites elsewhere should also be considered. Moreover, results corroborate the supposition that microbially generated surface roughness may be significant for stromatolite morphogenesis in cryptic Precambrian carbonates. [source] SCANNING ELECTRON MICROSCOPY OBSERVATIONS OF DEFORMITIES IN SMALL PENNATE DIATOMS EXPOSED TO HIGH CADMIUM CONCENTRATIONS,JOURNAL OF PHYCOLOGY, Issue 6 2008Soizic Morin Different types of malformations are likely to affect the morphology of diatoms when exposed to particularly unstable environmental conditions, the most easily identifiable being distortion of the whole frustule. In the present study, we investigated, by means of SEM, valve abnormalities induced by high cadmium contamination (100 ,g ˇ L,1) in small pennate diatoms. Changes in the shape of Amphora pediculus (Kütz.) Grunow and anomalous sculpturing of the cell wall of many species, such as Encyonema minutum (Hilse) D. G. Mann, Mayamaea agrestris (Hust.) Lange-Bert., Gomphonema parvulum (Kütz.) Kütz., or Eolimna minima (Grunow) Lange-Bert., were observed, which were not, or almost not, noticeable in the LM. With consideration to current knowledge of diatom morphogenesis, metal uptake by the cell would induce, directly or indirectly, damage to many cytoplasmic components (e.g., microtubules, cytoskeleton, Golgi-derived vesicles) involved in the precisely organized silica deposition. This study confirms that many species, whatever their size, are likely to exhibit morphological abnormalities under cadmium stress, and that this indicator may be valuable for the biomonitoring of metal contamination, even if SEM observations are not necessary for routine studies. [source] Genetic control over silica deposition in wheat awnsPHYSIOLOGIA PLANTARUM, Issue 1 2010Zvi Peleg Awns are long, stiff filamentous extensions of glumes in many grasses. In wheat, awns contribute up to 40% of the grain's photosynthetic assimilates, and assist in seed dispersal. Awns accumulate silica in epidermal hairs and papillae, and silica has been positively associated with yield and environmental stress tolerance. Here, the awns of a set of domesticated wheat genotypes and their direct progenitor, Triticum turgidum ssp. dicoccoides were characterized. In addition, the silica concentration in awns was genetically dissected in a tetraploid wheat population of recombinant inbred lines (RILs) derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Scanning electron micrographs revealed a continuous silica layer under the cuticle. Extended silicification was identified in the epidermis cell wall and in sclerenchyma cells near the vascular bundles, but not in the stomata, suggesting that an active process directs the soluble silica away from the water evaporation stream. The number of silicified cells was linearly correlated to silica concentration in dry weight (DW), suggesting cellular control over silicification. Domesticated wheat awns contained up to 19% silica per DW, as compared with 7% in the wild accessions, suggesting selection pressure associated with the domestication process. Six quantitative trait loci (QTLs) for silica were identified in the awns, with a LOD score of 3.7,6.3, three of which overlapped genomic regions that contribute to high grain protein. Localization of silica in the awns and identification of QTLs help illuminate mechanisms associated with silica metabolism in wheat. [source] Silicon-augmented resistance of plants to herbivorous insects: a reviewANNALS OF APPLIED BIOLOGY, Issue 2 2009O.L. Reynolds Abstract Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two- and three-trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si-mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical-mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores. [source] Long-Chain Polyamines (LCPAs) from Marine Sponge: Possible Implication in Spicule FormationCHEMBIOCHEM, Issue 14 2007Satoko Matsunaga Abstract Two distinct marine organisms, diatoms and sponges, deposit dissolved silicates to construct highly architectural and species-specific body supports. Several factors such as proteins, long-chain polyamines (LCPAs), or polypeptides modified with LCPAs are known to be involved in this process. The LCPAs contained in the silica walls of diatoms are thought to play pivotal roles in the silica deposition. In sponges, however, a protein called silicatein and several other proteins have been reported to be the factors involved in the silica deposition. However, no other factors involved in this process have been reported. We have identified the LCPAs from the marine sponge Axinyssa aculeata and present here some evidence that sponge-derived LCPAs can deposit silica and that the LCPA derivatives are associated with spicules. The results indicate a common chemistry between sponges and diatoms, the two major players in the biological circulation of silicon in the marine environment. A wide variety of organisms are known to utilize silica in their biological processes. Polyamines or other functional molecules might be involved, in combination with proteins, in their biosilicification process. [source] |