Home About us Contact | |||
Significant Temporal Variation (significant + temporal_variation)
Selected AbstractsErythroneura lawsoni abundance and feeding injury levels are influenced by foliar nutrient status in intensively managed American sycamoreAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 1 2010David Robert Coyle 1Abundance and feeding injury of the leafhopper Erythroneura lawsoni Robinson was measured in an intensively-managed American sycamore Platanus occidentalis L. plantation. Trees were planted in spring 2000 in a randomized complete block design, and received one of three annual treatments: (i) fertilization (120 kg N/ha/year); (ii) irrigation (3.0 cm/week); (iii) fertilization + irrigation; or (iv) control (no treatment). 2Foliar nutrient concentrations were significantly influenced by the treatments because only sulphur and manganese levels were not statistically greater in trees receiving fertilization. 3Over 116 000 E. lawsoni were captured on sticky traps during the study. Leafhopper abundance was highest on nonfertilized trees for the majority of the season, and was positively correlated with foliar nutrient concentrations. Significant temporal variation in E. lawsoni abundance occurred, suggesting five discrete generations in South Carolina. 4Significant temporal variation occurred in E. lawsoni foliar injury levels, with the highest injury ratings occurring in late June and August. Foliar injury was negatively correlated with foliar nutrient content, and higher levels of injury occurred more frequently on nonfertilized trees. 5The results obtained in the present study indicated that increased E. lawsoni abundance occurred on trees that did not receive fertilization. Nonfertilized trees experienced greater foliar injury, suggesting that lower foliar nutrient status may have led to increased levels of compensatory feeding. [source] Species diversity and population dynamics of rodents in a farm-fallow field mosaic system in Central TanzaniaAFRICAN JOURNAL OF ECOLOGY, Issue 2 2010Rhodes H. Makundi Abstract A Capture-Mark-Recapture study was undertaken in Central Tanzania to compare variations in community structure and population dynamics of rodents in two types of habitats. The study was conducted in fallow field mosaic habitat dominated by perennial and annual grasses (grid BEA) and a more heterogeneous habitat (grid BEB) which was previously woodland cleared of most trees with vegetation dominated by shrubs, bushes, scattered trees and perennial grass. The relative abundance of rodents in BEA was: Mastomys natalensis (73.5%) > Aethomys chrysophilus (8.9%) > Gerbilliscus vicina (7.3%) > Arvicanthis neumanni (6.1%) > Acomys spinosissimus (4.1%) and for grid BEB: M. natalensis (67.6%) > G. vicina (11.2%) > A. neumanni (10.3%) > A. chrysophilus (7.6%) > A. spinosissimus (2.9%). Graphiurus sp., Mus minutoides, Saccostomus mearnsi, Lemniscomys striatus and L. griselda were rare and only occasionally trapped in BEB. Spatial variations in population density were non-significant except for A. chrysophilus. Significant temporal variations within grids were observed, with synchrony of population peaks for some species. The rare species boosted species richness of grid BEB rather artificially, without significantly contributing to higher species diversity. Temporal variations in Simpson's Diversity indices between grids were non-significant except for three out of twenty-one trapping sessions. Résumé Une étude par capture , marquage , recapture fut entreprise dans le centre de la Tanzanie pour comparer les variations de la structure des communautés et de la dynamiques des populations de rongeurs dans deux types d'habitats. L'étude fut menée dans un habitat composé d'une mosaïque de prairies en jachères dominé par des herbes pérennes et annuelles (grille BEA) et dans un habitat plus hétérogène (grille BEB) qui était auparavant une forêt, défrichée de la plupart de ses arbres et dominée par des buissons, des arbustes, des arbres épars et des herbes pérennes. L'abondance relative des rongeurs dans BEA était la suivante : Mastomys natalensis (73,5%) > Aethomys chrysophilus (8,9%) > Gerbilliscus vicina (7,3%) > Arvicanthis neumanni (6,1%) > Acomys spinosissimus (4,1%), et pour la grille BEB: M natalensis (67,6%) > G. vicina (11,2%) > A. neumanni (10,3%) > A. chrysophilus (7,6%) > A. spinosissimus (2,9%). Graphiurus sp. Mus minutoides, Saccostomus mearnsi, Lemniscomys striatus et L. griseldaétaient rares et n'étaient que rarement capturés dans BEB. Les variations spatiales de la densité de population n'étaient pas significatives sauf pour A. chrysophilus. Des variations temporelles significatives furent observées à l'intérieur des grilles, ainsi qu'une synchronisation des pics de population pour certaines espèces. Les espèces rares renforçaient de façon plutôt artificielle la richesse en espèces de la grille BEB, sans contribuer significativement à une plus grande diversité des espèces. Des variations temporelles des indices de diversité de Simpson entre les grilles n'étaient pas significatives sauf pour trois des 21 sessions de captures. [source] The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, CaliforniaJOURNAL OF ECOLOGY, Issue 4 2005PHILLIP J. VAN MANTGEM Summary 1We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. [source] Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrumMOLECULAR ECOLOGY, Issue 19 2010J.-B. LEDOUX Abstract Identifying microevolutionary processes acting in populations of marine species with larval dispersal is a challenging but crucial task because of its conservation implications. In this context, recent improvements in the study of spatial genetic structure (SGS) are particularly promising because they allow accurate insights into the demographic and evolutionary processes at stake. Using an exhaustive sampling and a combination of image processing and population genetics, we highlighted significant SGS between colonies of Corallium rubrum over an area of half a square metre, which sheds light on a number of aspects of its population biology. Based on this SGS, we found the mean dispersal range within sites to be between 22.6 and 32.1 cm, suggesting that the surveyed area approximately corresponded to a breeding unit. We then conducted a kinship analysis, which revealed a complex half-sib family structure and allowed us to quantify the level of self-recruitment and to characterize aspects of the mating system of this species. Furthermore, significant temporal variations in allele frequencies were observed, suggesting low genetic drift. These results have important conservation implications for the red coral and further our understanding of the microevolutionary processes acting within populations of sessile marine species with a larval phase. [source] |