Significant Stability (significant + stability)

Distribution by Scientific Domains


Selected Abstracts


The temporal stability of electrodermal variables over a one-year period in patients with recent-onset schizophrenia and in normal subjects

PSYCHOPHYSIOLOGY, Issue 2 2002
Anne M. Schell
Test,retest stability of electrodermal (EDA) variables indexing both general autonomic arousal (e.g., skin conductance level, number of nonspecific skin conductance responses) and attention to external stimuli (e.g., number of skin conductance orienting responses, electrodermal responder/nonresponder status) was assessed in 71 young, recent-onset schizophrenia patients and 36 demographically matched normal subjects. Significant stability over a 1-year period was found for both patients and normal subjects for most EDA variables and for responder/nonresponder status, with test,retest correlations generally being higher for normal subjects. The lower reliability for patients was not attributable to symptomatic fluctuations during the follow-up period and may reflect poorer arousal regulation among the patients. Among measures of responding to nontask stimuli, a simple count of the number of orienting responses occurring was more stable than was a traditional trials-to-habituation measure. [source]


Synthesis and Electrochemical Study of an Original Copper(II)-Capped Salen,Cyclodextrin Complex

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 29 2010
Elise Deunf
Abstract A new metallocapped cyclodextrin (CD) was synthesized by the regioselective debenzylation, induced by diisobutylaluminium hydride (DIBAL-H), of perbenzylated cyclodextrins. This reaction allowed for the efficient preparation of an unprecedented CD,salen type copper(II) complex. The electrochemical behavior of both the bound and unbound CD,salen compounds was investigated by cyclic voltammetry. Notably, it was shown that the presence of tert -butyl groups at the ortho - and para -positions of the salen aromatic rings stabilized the copper(II) phenoxyl radical species that was generated upon the one-electron oxidation of the starting compound. Importantly, this stabilization remained effective when the salen-type ligand was covalently attached to the CD. This allowed for investigations of the reactivity of the copper(II) phenoxyl radical complex towards a primary alcohol to be performed by cyclic voltammetry. This reaction can be considered as mimicking the behavior of galactose oxidase. However, under these conditions, no reactivity was observed in the presence of benzyl alcohol. This may be due to distortion, either of the initially square planar salen ligand after its grafting to the CD primary face, and/or of the CD itself. On the other hand, the electrochemical reduction of the un-grafted copper(II) salen-type ligand led to a transient anionic species that exhibited significant stability on the time-scale of the slow cyclic voltammetry measurement in the absence of the CD, but was unstable in the presence of the CD. In the latter case, it was demonstrated that the anionic species was protonated by the CD. Importantly, this protonation was not fast enough to prevent catalytic activation of iodomethane by the electro-generated copper(I)-capped salen CD complex. [source]


Hydroxypropyl-,-Cyclodextrin-Capped Palladium Nanoparticles: Active Scaffolds for Efficient Carbon-Carbon Bond Forming Cross-Couplings in Water

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 14-15 2009
Jaqueline
Abstract A new approach for the preparation of palladium nanoparticles in water from a renewable source, 2-hydroxypropyl-,-cyclodextrin (,-HPCD), which acts both as a reductant and capping agent, is presented. The palladium nanoparticles were characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), which revealed the formation of spherical particles in the size range of 2,7,nm. Further analysis by Fourier-transform infrared spectroscopy (FT-IR) and 1H,NMR did not show covalent bonds between cyclodextrins and palladium nanoparticles, suggesting that ,-HPCD is only physically adsorbed on the nanoparticle surface, presumably through hydrophobic interactions which limit the mutual coalescence of nanoclusters. The catalytic activity was tested in Suzuki, Heck and Sonogashira reactions in neat water, providing good yields and selectivities of coupling products under very low Pd loadings (0.5,0.01,mol%). Remarkably, the nanocatalyst showed significant stability hence the aqueous phase remained active for four subsequent runs. The combination of a binding site for substrates (the HPCD cavity) and a reactive centre (Pd core) provides a potential to explore functional catalysis in aqueous medium. [source]


Cadaveric and Engineering Analysis of the Septal L-Strut,

THE LARYNGOSCOPE, Issue 11 2007
Ted Mau MD
Abstract Objectives: To identify patterns of failure of the L-strut, to identify elements of the nasal framework that support the L-strut, and to investigate the effect of altering L-strut design on its stability. Study Design: Laboratory study with human cadaveric heads and computational modeling. Methods: Directional forces were applied to cadaveric L-struts and patterns of failure with incremental force were noted. Computational modeling using the finite element method (FEM) was employed to determine quantitatively the effect of various modifications on the stability of the L-strut. Results: The L-strut was found to respond to frontal force initially by buckling. This buckling was reversible until the force exceeded a certain threshold when the L-strut broke at the bony-cartilaginous junction. The threshold force varied depending on the length of the overlap with the bony vault. Intact mucoperichondrium provided significant stability. Modeling with FEM showed that the preservation of a triangular piece of cartilage at the dorsal anchor of a narrowed L-strut can offset some of the loss in mechanical stability. Conclusions: Intrinsic elasticity of the septal cartilage, the mucoperichondrial flap, and overlap with the bony vault all contribute to the stability of the L-strut, which is enhanced by preserving a small segment of cartilage at the bony-cartilaginous junction of the dorsal L-strut. [source]


The oblique cord of the forearm in man

CLINICAL ANATOMY, Issue 4 2007
R. Shane Tubbs
Abstract There is minimal and often conflicting data in the literature regarding the oblique cord of the forearm. The current study seeks to elucidate further the anatomy of this structure of the upper extremity. In adult cadavers, the oblique cord was observed for and, when found, measurements were made of it. Ranges of motion were carried out while observation of the oblique cord was made. An oblique cord was found on 52.6% of sides. Gantzer's muscle was found on 55% of sides and, when present, had attachment into the oblique cord on five sides. The oblique cord was present on 13 sides with a Gantzer's muscle. Of the 20 sides with an oblique cord, no Gantzer's muscle was found on 10. The mean length of the oblique cord was 3.4 cm. In the majority of specimens, this cord tapered from proximal to distal. The proximal, middle, and distal widths of this structure had means 9, 7, and 4 mm, respectively. The oblique cord was found to travel ,45 degrees from a line drawn through the ulna and more or less traveled perpendicular to the insertion site of the bicipital tendon. This ligament was lax in the neutral position and with pronation became lax in all specimens. The oblique cord progressively became taut with increased supination from the neutral position and was maximally taut with the forearm fully supinated. Tautness of this cord was also found with distal distraction of the radius. Following the transection of the oblique cord, no discernable difference was observed in regard to maximal supination of the forearm or distal distraction of the radius. No obvious instability of the proximal forearm was found following transection of the oblique cord. Functionally, although the oblique cord may resist supination, it is unlikely that this structure affords significant stability to the proximal forearm, as it was often absent, of a very small caliber, and based on our observations, following its transection, the amount of supination of the forearm did not increase. Moreover, one would expect that this structure would never resist supination alone, as the larger overlying muscles would become taut prior to calling upon the action of this cord. Based on our findings, the function of the oblique cord appears insignificant in providing significant stability to the proximal forearm; however, further investigative studies are now necessary to confirm these data. Clin. Anat. 20:411,415, 2007. © 2006 Wiley-Liss, Inc. [source]