Significant Ramifications (significant + ramification)

Distribution by Scientific Domains


Selected Abstracts


A closed-loop proposal for hydrogen generation using steel waste and a prototype solar concentrator

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2009
Abdul-Majeed Azad
Abstract An economically viable and environmental-friendly method of generating PEM grade hydrogen has been proposed and is by the reaction of certain metals with steam, appropriately called ,metal,steam reforming',MSR. The drawbacks of conventional processes (hydrogen and carbothermic reduction schemes) are overcome by resorting to solution-based reduction schemes and are made economically feasible using iron oxides from steel industry's mill-scale waste. A novel aqueous-based room temperature technique using sodium borohydride (NaBH4) as the reducing agent has been developed that produces highly active nanoscale iron particles (,40,nm). By using hydrazine as an inexpensive and, compared with NaBH4, more stable reductant, body centered cubic iron particles with ,5,nm edges were obtained via solvothermal process under mild conditions from acid digested mill-scale waste. The nanoscale zerovalent iron (nZVI) powder showed improved kinetics and greater propensity for hydrogen generation than the coarser microscale iron. The rate constants for the MSR were obtained for all the reduction schemes employed in this work and are given by khydrogen=0.0158,min,1kcarbon=0.0248,min,1ksodiumborohydride=0.0521,min,1 and khydrazine=0.1454,min,1, assuming first order kinetics. Another innovative effort converted the magnetite waste directly into nZVI under solvothermal conditions, thus obviating the sluggish and time-consuming acid dissolution step. This particular aspect has significant ramification in terms of time and cost of making the iron precursor. To initiate and sustain the somewhat endothermic MSR process, a solar concentrator consisting of a convex polyacrylic bowl with reflective aluminum coating was fabricated and evaluated. This unique combination of mill-scale waste as iron source, hydrazine as reductant, mild process conditions and solar energy as the MSR actuator obviates several drawbacks plaguing the grand scheme of producing and delivering pure and humidified H2 to a PEMFC stack. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Enhanced Optical Properties and Opaline Self-Assembly of PPV Encapsulated in Mesoporous Silica Spheres

ADVANCED FUNCTIONAL MATERIALS, Issue 23 2009
Timothy L. Kelly
Abstract A new poly(p -phenylenevinylene) (PPV) composite material has been developed by the incorporation of insoluble PPV polymer chains in the pores of monodisperse mesoporous silica spheres through an ion-exchange and in situ polymerization method. The polymer distribution within the resultant colloidal particles is characterized by electron microscopy, energy dispersive X-ray microanalysis, powder X-ray diffraction, and nitrogen adsorption. It was found that the polymer was selectively incorporated into the mesopores of the silica host and was well distributed throughout the body of the particles. This confinement of the polymer influences the optical properties of the composite; these were examined by UV,vis and fluorescence spectroscopy and time-correlated single-photon counting. The results show a material that exhibits an extremely high fluorescence quantum yield (approaching 85%), and an improved resistance to oxidative photobleaching compared to PPV. These enhanced optical properties are further complemented by the overall processability of the colloidal material. In marked contrast to the insolubility of PPV, the material can be processed as a stable colloidal dispersion, and the individual composite spheres can be self-assembled into opaline films using the vertical deposition method. The bandgap of the opal can be engineered to overlap with the emission band of the polymer, which has significant ramifications for lasing. [source]


Purification and characterization of heparan sulfate from human primary osteoblasts

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2009
Sadasivam Murali
Abstract Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts,soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface. J. Cell. Biochem. 108: 1132,1142, 2009. © 2009 Wiley-Liss, Inc. [source]


Vague Singulars, Semantic Indecision, and the Metaphysics of Persons,

PHILOSOPHY AND PHENOMENOLOGICAL RESEARCH, Issue 3 2007
DONALD P. SMITH
Composite materialism, as I will understand it, is the view that human persons are composite material objects. This paper develops and investigates an argument, The Vague Singulars Argument, for the falsity of composite materialism. We shall see that cogent or not, the Vague Singulars Argument has philosophically significant ramifications. [source]


Hypervitaminosis A in experimental nonhuman primates: evidence, causes, and the road to recovery

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 10 2009
Joseph T. Dever
Abstract One of the great underlying assumptions made by all scientists utilizing primate models for their research is that the optimal nutritional status and health of the animals in use has been achieved. That is, no nutrient deficiency or excess has compromised their health in any detectable way. To meet this assumption, we rely on the National Research Council's (NRC's) nutritional recommendations for nonhuman primates to provide accurate guidance for proper dietary formulations. We also rely on feed manufacturers to follow these guidelines. With that in mind, the purpose of this commentary is to discuss three related points that we believe have significant ramifications for the health and well being of captive primates as well as for their effective use in biomedical research. First, our laboratory has shown that most experimental primates are likely in a state of hypervitaminosis A. Second, it is apparent that many primate diets are providing vitamin A at levels higher than the NRC's recommendation. Third, the recommendation itself is based on inadequate information about nutrient needs and is likely too high, especially when compared with human requirements. Am. J. Primatol. 71:813,816, 2009. © 2009 Wiley-Liss, Inc. [source]


Variation in Instructional Discourse Features: Cultural or Linguistic?

ANTHROPOLOGY & EDUCATION QUARTERLY, Issue 4 2003
Evidence from Inuit, Non-Inuit Teachers of Nunavik
This article examines discourse features in the instructional interactions of eight Inuit and six non-lnuit teachers of Inuit children in northern Québec. Significant differences existed between these two groups of teachers in their use of Initiation-Response-Evaluation (IRE) routines, nomination format, and teacher response to student initiations. The research distinguishes cultural factors from factors related to second language teaching. Findings suggest the cultural variability of discourse features that have significant ramifications for teacher judgments regarding students' academic and communicative competence. [source]


Large Artery Stiffness: Implications For Exercise Capacity And Cardiovascular Risk

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2002
Bronwyn A Kingwell
SUMMARY 1. Large artery stiffness, or its inverse, compliance, determines pulse pressure, which, in turn, influences myocardial work capacity and coronary perfusion, both of which impact on exercise capacity and cardiovascular risk. 2. In support of a role for arterial properties in exercise performance, aerobically trained athletes (aged 30,59 years) have lower arterial stiffness than their sedentary counterparts. Furthermore, in healthy older subjects (aged 57,80 years), time to exhaustion on treadmill testing correlated positively with arterial compliance. 3. Arterial stiffness is more closely linked to exercise capacity and myocardial risk in patients with coronary disease where, independently of degree of coronary disease, those with stiffer proximal arteries have a lower exercise-induced ischaemic threshold. 4. Moderate aerobic training elevates resting arterial compliance by approximately 30%, independently of mean pressure reduction, in young healthy individuals but not in isolated systolic hypertensive patients. Rat training studies support a role for exercise training in structural remodelling of the large arteries. 5. High-resistance strength training is associated with stiffer large arteries and higher pulse pressure than matched controls. 6. Large artery stiffness is an important modulator of the myocardial blood supply and demand equation, with significant ramifications for athletic performance and ischaemic threshold in coronary disease patients. Moderate aerobic training, but not high-resistance strength training, reduces large artery stiffness in young individuals whereas older subjects with established isolated systolic hypertension are resistant to such adaptation. [source]