Significant Indicator Species (significant + indicator_species)

Distribution by Scientific Domains


Selected Abstracts


Intra- and Interannual Vegetation Change: Implications for Long-Term Research

RESTORATION ECOLOGY, Issue 1 2008
Julie E. Korb
Abstract To draw reliable conclusions from forest restoration experiments, it is important that long-term measurements be repeatable or year-to-year variability may interfere with the correct interpretation of treatment effects. We used permanent plots in a long-term restoration study in southwestern Colorado to measure herbaceous and shrub vegetation at three dates within a single year (June, July, and August), and between years (2003 and 2005), on untreated control plots in a warm, dry mixed conifer forest. Growing season precipitation patterns were similar between 2003 and 2005, so differences in vegetation should be related primarily to differences in the sampling month. Significant indicator species for each sampling month were present within a single year (2005), primarily reflecting early-season annuals. We found no significant differences for total species abundance (2005). Species richness, abundance, and indicator species were significantly different between years for different sampling months indicating that sampling should be conducted within a similar time frame to avoid detecting differences that are not due to treatment effects or variations in year-to-year climate. These findings have implications for long-term research studies where the objectives are to detect changes over time in response to treatments, climate variation, and natural processes. Long-term sampling should occur within a similar phenological time frame each year over a short amount of time and should be based on the following criteria: (1) the sampling period is congruent with research objectives such as detecting rare species or peak understory abundance and (2) the sampling period is feasible in regard to personnel and financial constraints. [source]


Local extent of old-growth woodland modifies epiphyte response to climate change

JOURNAL OF BIOGEOGRAPHY, Issue 2 2009
Christopher J. Ellis
Abstract Aim, To quantify the interaction between climate and woodland continuity in determining the bioclimatic response of lichen epiphytes. Location, Northern Britain (Scotland). Methods, Indicator-species analysis was used to pre-select lichen epiphytes along parallel gradients in climate and the extent of old-growth woodland. Nonparametric multiplicative regression was used to describe in a predictive model the individualistic response of selected species, which were projected based on climate-change scenarios and contrasting patterns of simulated woodland loss or gain. Species with a similar response were grouped using a novel application of cluster analysis to summarize the potentially huge number of projected outcomes. Projected patterns of occurrence under climate-change scenarios were examined for different levels of old-growth woodland extent. Results, Forty-two lichen species were statistically significant indicator species in oceanic woodlands, and old-growth indicators under suboptimal climatic conditions. Responses to climate-change scenarios were contrasting, with one group comprising species projected to increase in extent in response to climate warming, and other response groups projected to decrease in occurrence, possibly in response to shifting rainfall patterns. The occurrence of all response groups had a positive relationship with old-growth woodland extent. Main conclusions, An ,oceanic' biogeographical group of epiphytes identified using the baseline climatic and present-day woodland setting comprised species with a cyanobacterial photobiont or tropical phytogeographical affinities. However, within this group the individual species responses to climate-change scenarios were contrasting. Additionally, group responses may be poorly matched with simple ecological traits. However, the studied interaction between climate and habitat continuity suggests that the impact of climate change might be offset for certain lichen epiphytes by appropriate management of woodland resources, for example, expansion of native woodland around remnant old-growth stands. [source]


Relationship between species richness and spatial and temporal distance from seed source in semi-natural grassland

APPLIED VEGETATION SCIENCE, Issue 3 2010
Toshikazu Matsumura
Abstract Question: How do traditional management practices of field margins maintain the biodiversity of native grassland species? Location: Semi-natural grassland on the field margins of traditional and consolidated agricultural fields on Awaji Island, central Japan. Methods: The distance to the nearest traditional field margin to the study sites was determined because the traditional field was considered as a seed source of native vegetation to the semi-natural grasslands under study. We selected field margins in consolidated fields of different ages and distances from seed sources. Indicator species for both field types were sought. Regression analysis and detrended correspondence analysis (DCA) were used to determine the effect of spatial and temporal distances on the species composition of native vegetation. Results: Species richness differed significantly between the margin of traditional and consolidated fields. We identified significant indicator species of traditional fields, but not of consolidated fields. In consolidated fields, species richness increased significantly with age and decreased significantly with increasing distance to the source. At younger sites, species richness decreased faster with distance to the source because of strong negative correlation, but not at older sites. DCA ordination plots similarly indicated that similarities of vegetation composition in consolidated and traditional fields decreased with distance, and the effect of distance decreased with age. Conclusions: The species composition of the grassland margins of consolidated field was more similar to the margins of traditional fields if the consolidated fields were older, and/or closer to traditional fields. This pattern suggests that dispersal may play a role in the establishment of species on field margins. [source]


A comparison of litter beetle assemblages (Coleoptera) in mature and recently clearfelled Eucalyptus obliqua forest

AUSTRALIAN JOURNAL OF ENTOMOLOGY, Issue 2 2006
Susan C Baker
Abstract, This study compares litter-dwelling beetles in mature wet eucalypt forest with those in young forest regenerated following clearfelling. The aims of the study were to determine the extent to which these forest ages support differing litter beetle assemblages, and to identify species characteristic of each age. Beetles were collected with pitfall traps in a spatially replicated study design to avoid confounding forest age and site differences. Three transects of traps were located in each of mature and young forest stands at four study sites. Beetle abundance was greatest in young forest, and young and mature forest supported distinctly different beetle assemblages. Of 37 commonly collected species, an indicator species analysis found 9 species characteristic of young logging regeneration, and 7 species characteristic of mature unlogged forest. These species could be useful in other Tasmanian studies concerning forest management impacts. Only two significant indicator species were carabids, suggesting that focusing only on carabids as indicators of forest management may be undesirable. [source]