Significant Genetic Correlations (significant + genetic_correlation)

Distribution by Scientific Domains


Selected Abstracts


Heritability of life-history tactics and genetic correlation with body size in a natural population of brook charr (Salvelinus fontinalis)

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2007
V. THÉRIAULT
Abstract A common dimorphism in life-history tactic in salmonids is the presence of an anadromous pathway involving a migration to sea followed by a freshwater reproduction, along with an entirely freshwater resident tactic. Although common, the genetic and environmental influence on the adoption of a particular life-history tactic has rarely been studied under natural conditions. Here, we used sibship-reconstruction based on microsatellite data and an ,animal model' approach to estimate the additive genetic basis of the life-history tactic adopted (anadromy vs. residency) in a natural population of brook charr, Salvelinus fontinalis. We also assess its genetic correlation with phenotypic correlated traits, body size and body shape. Significant heritability was observed for life-history tactic (varying from 0.52 to 0.56 depending on the pedigree scenario adopted) as well as for body size (from 0.44 to 0.50). There was also a significant genetic correlation between these two traits, whereby anadromous fish were genetically associated with bigger size at age 1 (rG = ,0.52 and ,0.61). Our findings thus indicate that life-history tactics in this population have the potential to evolve in response to selection acting on the tactic itself or indirectly via selection on body size. This study is one of the very few to have successfully used sibship-reconstruction to estimate quantitative genetic parameters under wild conditions. [source]


Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations

MOLECULAR ECOLOGY, Issue 2 2007
KELLY R. ZAMUDIO
Abstract We examined fine-scale genetic variation among breeding aggregations of the spotted salamander (Ambystoma maculatum) to quantify dispersal, interpopulation connectivity and population genetic structure. Spotted salamanders rely on temporary ponds or wetlands for aggregate breeding. Adequate breeding sites are relatively isolated from one another and field studies suggest considerable adult site fidelity; therefore, we expected to find population structure and differentiation at small spatial scales. We used microsatellites to estimate population structure and dispersal among 29 breeding aggregations in Tompkins County, New York, USA, an area encompassing 1272 km2. Bayesian and frequency-based analyses revealed fine-scale genetic structure with two genetically defined demes: the North deme included seven breeding ponds, and the South deme included 13 ponds. Nine ponds showed evidence of admixture between these two genetic pools. Bayesian assignment tests for detection of interpopulation dispersal indicate that immigration among ponds is common within demes, and that certain populations serve as sources of immigrants to neighbouring ponds. Likewise, spatial genetic correlation analyses showed that populations , 4.8 km distant from each other show significant genetic correlation that is not evident at higher scales. Within-population levels of relatedness are consistently larger than expected if mating were completely random across ponds, and in the case of a few ponds, within-population processes such as inbreeding or reproductive skew contribute significantly to differentiation from neighbouring ponds. Our data underscore the importance of these within-population processes as a source of genetic diversity across the landscape, despite considerable population connectivity. Our data further suggest that spotted salamander breeding groups behave as metapopulations, with population clusters as functional units, but sufficient migration among demes to allow for potential rescue and recolonization. Amphibian habitats are becoming increasingly fragmented and a clear understanding of dispersal and patterns of population connectivity for taxa with different ecologies and life histories is crucial for their conservation. [source]


Condition-dependent traits and the capture of genetic variance in male advertisement song

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2004
L. S. E. Brandt
Abstract The occurrence of additive genetic variance (VA) for male sexual traits remains a major problem in evolutionary biology. Directional selection normally imposed by female choice is expected to reduce VA greatly, yet recent surveys indicate that a substantial amount remains in many species. We addressed this problem, also known as the ,lek paradox', in Achroia grisella (Lepidoptera: Pyralidae), an acoustic moth in which males advertise to females with a pulsed ultrasonic song. Using a standard half-sib/full-sib breeding design, we generated F1 progeny from whom we determined VA and genetic covariance (COVA) among seven traits: three song characters, an overall index of song attractiveness, nightly singing period, adult lifespan, and body mass at adult eclosion. Because A. grisella neither feed nor drink as adults, the last trait, eclosion body mass, is considered a measure of ,condition'. We found significant levels of VA and narrow-sense heritabilities (h2) for all seven traits and significant genetic correlations (= COVAi,j /,(VA i·VA j)) between most pairs of traits (i, j). Male attractiveness was positively correlated with body mass (condition), adult lifespan, and nightly singing period, which we interpret as an energy constraint preventing males in poor condition from singing attractively, from singing many hours per night, and from surviving an extended lifespan. The positive genetic correlation (r = 0.79) between condition and attractiveness, combined with significant levels of VA for both traits, indicates that much of the variation in male song can be explained by VA for condition. Finally, we discuss the morphological and physiological links between condition and song attractiveness, and the ultimate factors that may maintain VA for condition. [source]


Genetic variation in Arabidopsis thaliana for night-time leaf conductance

PLANT CELL & ENVIRONMENT, Issue 8 2008
MAIRGARETH A. CHRISTMAN
ABSTRACT Night-time leaf conductance (gnight) and transpiration may have several adaptive benefits related to plant water, nutrient and carbon relations. Little is known, however, about genetic variation in gnight and whether this variation correlates with other gas exchange traits related to water use and/or native habitat climate. We investigated gnight in 12 natural accessions and three near isogenic lines (NILs) of Arabidopsis thaliana. Genetic variation in gnight was found for the natural accessions, and gnight was negatively correlated with native habitat atmospheric vapour pressure deficit (VPDair), suggesting lower gnight may be favoured by natural selection in drier habitats. However, there were also significant genetic correlations of gnight with daytime gas exchange traits expected to affect plant fitness [i.e. daytime leaf conductance, photosynthesis and intrinsic water-use efficiency (WUEi)], indicating that selection on daytime gas exchange traits may result in indirect selection on gnight. The comparison of three NILs to their parental genotypes identified one quantitative trait locus (QTL) contributing to variation in gnight. Further characterization of genetic variation in gnight within and among populations and species, and of associations with other traits and native habitats will be needed to understand gnight as a putatively adaptive trait. [source]


Heritability of frontal brain function related to action monitoring

PSYCHOPHYSIOLOGY, Issue 4 2008
Andrey P. Anokhin
Abstract Monitoring the correspondence between the intended and actually executed action, a fundamental mechanism of behavioral regulation, is reflected by error-related negativity (ERN), an ERP component generated by the anterior cingulate cortex. This study examined genetic influences on the ERN and other components related to action monitoring (correct negativity, CRN, and error positivity, Pe). A flanker task was administered to adolescent twins (age 12) including 99 monozygotic (MZ) and 175 dizygotic (DZ) pairs. Genetic analysis showed substantial heritability of all three ERP components (40%,60%) and significant genetic correlations between them. This study provides the first evidence for heritable individual differences in the neural substrates of action monitoring and suggests that ERN, CRN, and Pe can potentially serve as endophenotypes for genetic studies of personality traits and psychopathology associated with abnormal regulation of behavior. [source]