Signature Genes (signature + gene)

Distribution by Scientific Domains


Selected Abstracts


Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice

AGING CELL, Issue 1 2010
James R. Mitchell
Summary Dietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress is not known. Here, we show that 2,4 weeks of 30% DR improved survival and kidney function following renal ischemia reperfusion injury in mice. Brief periods of water-only fasting were similarly effective at protecting against ischemic damage. Significant protection occurred within 1 day, persisted for several days beyond the fasting period and extended to another organ, the liver. Protection by both short-term DR and fasting correlated with improved insulin sensitivity, increased expression of markers of antioxidant defense and reduced expression of markers of inflammation and insulin/insulin-like growth factor-1 signaling. Unbiased transcriptional profiling of kidneys from mice subject to short-term DR or fasting revealed a significant enrichment of signature genes of long-term DR. These data demonstrate that brief periods of reduced food intake, including short-term daily restriction and fasting, can increase resistance to ischemia reperfusion injury in rodents and suggest a rapid onset of benefits of DR in mammals. [source]


The mechanisms of tumor suppressor effect of glucocorticoid receptor in skin

MOLECULAR CARCINOGENESIS, Issue 8 2007
Dmitry Chebotaev
Abstract Glucocorticoid hormones exert a tumor suppressor effect in different experimental models, including mouse skin carcinogenesis. The glucocorticoid control of cellular functions is mediated via the glucocorticoid receptor (GR), a well-known transcription factor that regulates genes by DNA-binding dependent transactivation, and DNA-binding independent transrepression through negative interaction with other transcription factors. In this perspective, we analyze known mechanisms that underlie the anticancer effect of GR signaling, including effects on cell growth, differentiation, apoptosis, and angiogenesis. We also discuss a novel mechanism for the tumor suppressor effect of the GR in skin: through the regulation of the number and status of follicular epithelial stem cells (SC), which are a target cell population for skin carcinogenesis. Our studies on keratin5.GR transgenic animals that are resistant to skin carcinogenesis, demonstrated that the GR diminishes the number of follicular epithelial SCs, reduces their proliferative and survival potential and affects the expression of follicular SC "signature" genes. The analysis of global effect of the GR on gene expression in follicular epithelial SCs, basal keratinocytes, and mouse skin tumors provided an unexpected evidence that gene transrepression by GR plays an important role in the maintenance of SC and in inhibition of skin carcinogenesis by this steroid hormone receptor. It is known that antiinflammatory effect of glucocorticoids is chiefly mediated by GR transrepression. Thus, our findings suggest the similarity between the mechanisms of antiinflammatory and anticancer effects of the GR signaling. We discuss the potential clinical applications of our findings in light of drug discovery programs focused on the development of selective GR modulators that preferentially induce GR transrepression. © 2007 Wiley-Liss, Inc. [source]


Transcription of proteinase 3 and related myelopoiesis genes in peripheral blood mononuclear cells of patients with active Wegener's granulomatosis

ARTHRITIS & RHEUMATISM, Issue 6 2010
Chris Cheadle
Objective Wegener's granulomatosis (WG) is a systemic inflammatory disease that is associated with substantial morbidity. The aim of this study was to understand the biology underlying WG and to discover markers of disease activity that would be useful for prognosis and treatment guidance. Methods Gene expression profiling was performed using total RNA from peripheral blood mononuclear cells (PBMCs) and granulocyte fractions from 41 patients with WG and 23 healthy control subjects. Gene set enrichment analysis (GSEA) was performed to search for candidate WG-associated molecular pathways and disease activity biomarkers. Principal components analysis was used to visualize relationships between subgroups of WG patients and controls. Longitudinal changes in proteinase 3 (PR3) gene expression were evaluated using reverse transcription,polymerase chain reaction, and clinical outcomes, including remission status and disease activity, were determined using the Birmingham Vasculitis Activity Score for WG (BVAS-WG). Results Eighty-six genes in WG PBMCs and 40 in WG polymorphonuclear neutrophils (PMNs) were significantly up-regulated relative to controls. Genes up-regulated in WG PBMCs were involved in myeloid differentiation, and these included the WG autoantigen PR3. The coordinated regulation of myeloid differentiation genes was confirmed by GSEA. The median expression values of the 86 up-regulated genes in WG PBMCs were associated with disease activity (P = 1.3 × 10,4), and WG patients with low-level expression of the WG signature genes showed expression profiles that were only modestly different from that in healthy controls (P = 0.07). PR3 transcription was significantly up-regulated in WG PBMCs (P = 1.3 × 10,5, false discovery rate [FDR] 0.002), but not in WG PMNs (P = 0.03, FDR 0.28), and a preliminary longitudinal analysis showed that the fold change in PR3 RNA levels in WG PBMCs corresponded to changes in the BVAS-WG score over time. Conclusion Transcription of PR3 and related myeloid differentiation genes in PBMCs may represent novel markers of disease activity in WG. [source]


Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium,derived mesenchymal stem cells

ARTHRITIS & RHEUMATISM, Issue 5 2009
Yoichi Ezura
Objective Human synovium,derived mesenchymal stem cells (MSCs) can efficiently differentiate into mature chondrocytes. It has been suggested that DNA methylation is one mechanism that regulates human chondrogenesis; however, the methylation status of genes related to chondrogenic differentiation is not known. The purpose of this study was to investigate the CpG methylation status in human synovium,derived MSCs during experimental chondrogenesis, with a view toward potential therapeutic use in osteoarthritis. Methods Human synovium,derived MSCs were subjected to chondrogenic pellet culture for 3 weeks. The methylation status of 12 regions in the promoters of 10 candidate genes (SOX9, RUNX2, CHM1, FGFR3, CHAD, MATN4, SOX4, GREM1, GPR39, and SDF1) was analyzed by bisulfite sequencing before and after differentiation. The expression levels of these genes were analyzed by real-time reverse transcription,polymerase chain reaction. Methylation status was also examined in human articular cartilage. Results Bisulfite sequencing analysis indicated that 10 of the 11 CpG-rich regions analyzed were hypomethylated in human progenitor cells before and after 3 weeks of pellet culture, regardless of the expression levels of the genes. The methylation status was consistently low in SOX9, RUNX2, CHM1, CHAD, and FGFR3 following an increase in expression upon differentiation and was low in GREM1 and GPR39 following a decrease in expression upon chondrogenesis. One exceptional instance of a differentially methylated CpG-rich region was in a 1-kb upstream sequence of SDF1, the expression of which decreased upon differentiation. Paradoxically, the hypermethylation status of this region was reduced after 3 weeks of pellet culture. Conclusion The DNA methylation levels of CpG-rich promoters of genes related to chondrocyte phenotypes are largely kept low during chondrogenesis in human synovium,derived MSCs. [source]