Signaling Molecules (signaling + molecule)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Signaling Molecules

  • cell signaling molecule
  • downstream signaling molecule
  • important signaling molecule
  • intracellular signaling molecule
  • other signaling molecule


  • Selected Abstracts


    Placental Trophoblast from Successful Human Pregnancies Expresses the Tolerance Signaling Molecule, CD200 (OX-2),

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2003
    David A. Clark
    Problem: Th1 cytokine-dependent abortions in the CBA × DBA/2 mouse model have been linked to down-regulation of expression of the CD200 (OX-2) ,tolerance' signal on trophoblast and in decidua prior to onset of the abortion process. Abortions could be prevented by administration of a soluble CD200. Is CD200 expressed on trophoblast in successful human pregnancy? Method of study: As one cannot easily obtain trophoblasts in large quantities from successful human pregnancies in the first trimester prior to the onset of the abortion process at 6 weeks gestation, we examined as a first step, trophoblast isolated from term placentae (i.e. successful pregnancies). CD9, trophoblasts were isolated by affinity column and stained for intracellular cytokeratin, and surface CD200 using PE-anti-human CD200 monoclonal antibody. mRNA was extracted from CD9+ and CD9, cells and tested by reverse transcription,polymerase chain reaction for CD200 mRNA. CD9, placental cells were separated by velocity sedimentation and test for CD200-dependent suppression of an allogeneic human mixed lymphocyte culture where cytotoxic T cell (CTL) generation, and Th1 , Th2 cytokine production shift were measured. Results: CD9, but not CD9+ placental cell populations contained cells with mRNA for CD200, both a normal length transcript and a truncated transcript. Flow cytometry showed a CD200+ cytokeratin+ moderate-to-large-sized cell population compatible with trophoblasts and a smaller subset of cytokeratin, cells that expressed CD200 at normal and at high levels. The moderate-sized population proved most potent at inhibiting CTL generation and caused a Th1,Th2 cytokine shift. These effects were blocked by monoclonal anti-CD200. Conclusions: A subpopulation of cytokeratin+ placental trophoblasts express bioactive CD200 able to alter maternal immune responses in a favorable (Th2 > Th1) direction. Two populations of CD200+ small- and medium-small-sized cytokeratin, placental cells remain to be identified. Studies of karyotyped first trimester elective termination and spontaneous miscarriage tissues are needed. [source]


    Gap Junctions as Active Signaling Molecules for Synchronous Cardiac Function

    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 1 2000
    MARIO DELMAR M.D., PH.D.
    [source]


    Tolerance Signaling Molecules and Pregnancy: IDO, Galectins, and the Renaissance of Regulatory T Cells

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2007
    Peter Terness
    Problem, Is the concept of maternal tolerance preventing rejection of the semi-allogeneic ,fetal allograft' still valid? Method of study, Compilation of expert reviews of literature and recent advances in research on indoleamine-2,3 dioxygenase (IDO), regulatory T cells and galectin-1. Results and Conclusion, A role for IDO in pregnancy success remains speculative, but solid data exist to support a role for Treg cells, and for galectin-1 in induction and action of Treg cells. Just as several signals may need to be simultaneously present to induce Th1 cytokine-triggered abortions, more than 1 signal may need to be simultaneously present to prevent rejection and ensure success. Both complement and coagulation pathways appear necessary for embryo execution. [source]


    Current concepts in periodontal bioengineering

    ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 4 2005
    M Taba Jr
    Abstract Authors ,, Taba Jr M, Jin Q, Sugai JV, Giannobile WV Repair of tooth supporting alveolar bone defects caused by periodontal and peri-implant tissue destruction is a major goal of reconstructive therapy. Oral and craniofacial tissue engineering has been achieved with limited success by the utilization of a variety of approaches such as cell-occlusive barrier membranes, bone substitutes and autogenous block grafting techniques. Signaling molecules such as growth factors have been used to restore lost tooth support because of damage by periodontal disease or trauma. This paper will review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Several different polymer delivery systems that aid in the targeting of proteins, genes and cells to periodontal and peri-implant defects will be highlighted. Results from preclinical and clinical trials will be reviewed using the topical application of bone morphogenetic proteins (BMP-2 and BMP-7) and platelet-derived growth factor-BB (PDGF) for periodontal and peri-implant regeneration. The paper concludes with recent research on the use of ex vivo and in vivo gene delivery strategies via gene therapy vectors encoding growth promoting and inhibiting molecules (PDGF, BMP, noggin and others) to regenerate periodontal structures including bone, periodontal ligament and cementum. [source]


    Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: Roles of Contactin and notochord-derived chondroitin sulfate proteoglycans

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2005
    Naoko Fujita
    An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons. [source]


    Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning

    DEVELOPMENTAL DYNAMICS, Issue 3 2009
    Glenn Maclean
    Abstract Cyp26b1 encodes a cytochrome-P450 enzyme that catabolizes retinoic acid (RA), a vitamin A derived signaling molecule. We have examined Cyp26b1,/, mice and report that mutants exhibit numerous abnormalities in cranial neural crest cell derived tissues. At embryonic day (E) 18.5 Cyp26b1,/, animals exhibit a truncated mandible, abnormal tooth buds, reduced ossification of calvaria, and are missing structures of the maxilla and nasal process. Some of these abnormalities may be due to defects in formation of Meckel's cartilage, which is truncated with an unfused distal region at E14.5 in mutant animals. Despite the severe malformations, we did not detect any abnormalities in rhombomere segmentation, or in patterning and migration of anterior hindbrain derived neural crest cells. Abnormal migration of neural crest cells toward the posterior branchial arches was observed, which may underlie defects in larynx and hyoid development. These data suggest different periods of sensitivity of anterior and posterior hindbrain neural crest derivatives to elevated levels of RA in the absence of CYP26B1. Developmental Dynamics 238:732,745, 2009. © 2009 Wiley-Liss, Inc. [source]


    Fjx1: A notch-inducible secreted ligand with specific binding sites in developing mouse embryos and adult brain

    DEVELOPMENTAL DYNAMICS, Issue 3 2005
    Rebecca Rock
    Abstract The mouse fjx1 gene was identified as a homologue to the Drosophila gene four-jointed (fj). Fj encodes a transmembrane type II glycoprotein that is partially secreted. The gene was found to be a downstream target of the Notch signaling pathway in leg segmentation and planar cell polarity processes during eye development of Drosophila. Here, we show that fjx1 is not only conserved in vertebrates, but we also identified the murine fjx1 gene as a direct target of Notch signaling. In addition to the previously described expression of fjx1 in mouse brain, we show here that fjx1 is expressed in the peripheral nervous system, epithelial cells of multiple organs, and during limb development. The protein is processed and secreted as a presumptive ligand. Through the use of an fjx1-AP fusion protein, we could visualize fjx1 binding sites at complementary locations, supporting the notion that fjx1 may function as a novel signaling molecule. Developmental Dynamics 234:602,612, 2005. © 2005 Wiley-Liss, Inc. [source]


    Induction of neurogenin-1 expression by sonic hedgehog: Its role in development of trigeminal sensory neurons

    DEVELOPMENTAL DYNAMICS, Issue 4 2003
    Mitsunori Ota
    Abstract We have examined the roles of signaling molecules in the mechanisms underlying the induction of neurogenin (ngn)-1 expression. ngn-1 is a basic helix-loop-helix (bHLH) transcription factor, which is essential for the specification of trigeminal sensory neurons. Semiquantitative reverse transcriptase-polymerase chain reaction using cranial explants in organ cultures showed that sonic hedgehog (Shh) promotes ngn-1 expression. This promoting activity was not observed in other signaling molecules examined. The promotion of ngn-1 expression by Shh, furthermore, was inhibited by cyclopamine, a specific inhibitor of Shh signaling. Shh did not affect the expression of ngn-2, a bHLH transcription factor that plays an important role in the specification of epibranchial placode-derived sensory neurons. The expression levels of ngn-1 and ngn-2 decreased after fibroblast growth factor-2 treatment. These results suggest that Shh induces ngn-1 expression specifically and that expression of ngn-1 and ngn-2 is regulated by different mechanisms. The induction of ngn-1 expression by Shh suggests that this signaling molecule participates in the specification of trigeminal sensory neurons. We therefore examined the effect of Shh on the development of these neurons. Immunostaining using anti,ngn-1 demonstrated that Shh promotes ngn-1 expression in trigeminal neural crest cells. Trigeminal neural crest cells are derived from the posterior mesencephalon and the most-anterior rhombencephalon, and they contain a subset of precursors of trigeminal sensory neurons. Moreover, a subpopulation of trigeminal neural crest cells expressed the Shh receptor Patched. The number of cells that express Brn3a, a POU-domain transcription factor that plays an important role in differentiation of sensory neurons, also increased with Shh treatment. Our data suggest that Shh signaling is involved in the specification of trigeminal sensory neurons through the induction of ngn-1 expression. Furthermore, Shh promotes the differentiation of neural crest cells into trigeminal sensory neurons. Developmental Dynamics 227:554,551, 2003. © 2003 Wiley-Liss, Inc. [source]


    Dopamine and sensory tissue development in Drosophila melanogaster

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2001
    Wendi Neckameyer
    Abstract Dopamine is an important signaling molecule in the nervous system; it also plays a vital role in the development of diverse non-neuronal tissues in the fruit fly Drosophila melanogaster. The current study demonstrates that males depleted of dopamine as third instar larvae (via inhibition of the biosynthetic enzyme tyrosine hydroxylase) demonstrated abnormalities in courtship behavior as adults. These defects were suggestive of abnormalities in sensory perception and/or processing. Electroretinograms (ERGs) of eyes from adults depleted of dopamine for 1 day as third instar larvae revealed diminished or absent on- and off-transients. These sensory defects were rescued by the addition of L -DOPA in conjunction with tyrosine hydroxylase inhibition during the larval stage. Depletion of dopamine in the first or second larval instar was lethal, but this was not due to a general inhibition of proliferative cells. To establish that dopamine was synthesized in tissues destined to become part of the adult sensory apparatus, transgenic lines were generated containing 1 or 4 kb of 5, upstream sequences from the Drosophila tyrosine hydroxylase gene (DTH) fused to the E. coli ,-galactosidase reporter. The DTH promoters directed expression of the reporter gene in discrete and consistent patterns within the imaginal discs, in addition to the expected expression in gonadal, brain, and cuticular tissues. The ,-galactosidase expression colocalized with tyrosine hydroxylase protein. These results are consistent with a developmental requirement for dopamine in the normal physiology of adult sensory tissues. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 280,294, 2001 [source]


    Endothelially Derived Nitric Oxide Affects the Severity of Early Acetaminophen-induced Hepatic Injury in Mice

    ACADEMIC EMERGENCY MEDICINE, Issue 5 2006
    Steven D. Salhanick MD
    Abstract Objectives: The precise mechanism of hepatocellular toxicity following acetaminophen (APAP) poisoning remains unclear. Nitric oxide is implicated in APAP toxicity as an inflammatory signaling molecule and as a precursor to the free radical peroxynitrate. The effects of inducible nitric oxide synthase (iNOS)-derived NO in APAP toxicity are known; however, the role of endothelial nitric oxide synthase (eNOS)-derived NO is unknown. The authors sought to evaluate the effect of eNOS-derived NO during APAP toxicity. Methods: C57BL6/J mice deficient in eNOS (eNOS KO) or iNOS (iNOS KO) and wild-type mice (WT) were treated with 300 mg/kg APAP. Alanine aminotransferase levels and plasma nitrate and nitrite levels were measured. Hypoxia inducible factor (HIF)-1, and Glucose Transporter 1 (Glut-1) levels were determined by Western blot. Results: Alanine aminotransferase levels were significantly elevated in all treated animals. Alanine aminotransferase levels were significantly lower in eNOS KO and iNOS KO than in treated WT animals. Plasma nitrate/nitrite levels were significantly higher in WT animals than in iNOS KO and eNOS KO animals. HIF-1, expression was increased in WT mice and decreased in iNOS KO mice. Glut-1 is a downstream, indirect marker of HIF function. Glut-1 expression was increased in WT and eNOS KO mice. Conclusions: Deficiency of either iNOS or eNOS results in decreased NO production and is associated with reduced hepatocellular injury following APAP poisoning. HIF-1, and Glut-1 levels are increased following APAP poisoning, implying that HIF-1, is functional during the pathogenic response to APAP poisoning. [source]


    Neurone-to-astrocyte communication by endogenous ATP in mixed culture of rat hippocampal neurones and astrocytes

    DRUG DEVELOPMENT RESEARCH, Issue 1 2003
    Schuichi Koizumi
    ATP is recognized as an important intercellular signaling molecule in the peripheral and CNS. Glutamate is reported to be an important neurone-to-glia mediator being released from neurones and astrocytes that activates astrocytic and neuronal Ca2+ responses, respectively. We demonstrate here that endogenous ATP could be an extracellular molecule for neurone-to-astrocyte communication in cocultured rat hippocampal neurones and astrocytes. Hippocampal neurones reveal synchronized Ca2+ oscillation, which was due to glutamatergic synaptic transmission. When analyzed in a fura-2 method, a slight and very slow increase in intracellular Ca2+ concentration ([Ca2+]i) elevation was observed in some population of astrocytes. Such astrocytic [Ca2+]i elevation was dramatically inhibited by apyrase, though apyrase itself had no effect on neuronal Ca2+ oscillation. For a detail analysis, we investigated changes in [Ca2+]i in cells using a confocal microscopy. When cocultured hippocampal neurones and astrocytes were depolarized electronically in the presence of glutamate-receptor antagonists, a transient elevation in [Ca2+]i was observed in neurones, which was followed by a slowly initiated and small rise in [Ca2+]i in astrocytes. Apyrase or P2 receptor antagonists almost abolished the [Ca2+]i rises in astrocytes, suggesting that depolarization-evoked ATP release from neurones should produce astrocytic [Ca2+]i elevation via P2 receptors. Using a luciferin,luciferase bioluminescence assay, we found that neurones could release ATP in an activity-dependent manner. These findings suggest that endogenous ATP should be an important intercellular mediator between neurones and astrocytes and that functions of these cells should be fine-tuned by endogenously released ATP in situ. Drug Dev. Res. 59:88,94, 2003. © 2003 Wiley-Liss, Inc. [source]


    FLR-2, the glycoprotein hormone alpha subunit, is involved in the neural control of intestinal functions in Caenorhabditis elegans

    GENES TO CELLS, Issue 10 2009
    Akane Oishi
    The intestine plays an essential role in organism-wide regulatory networks in both vertebrates and invertebrates. In Caenorhabditis elegans, class 1 flr genes (flr-1, flr-3 and flr-4) act in the intestine and control growth rates and defecation cycle periods, while class 2 flr genes (flr-2, flr-5, flr-6 and flr-7) are characterized by mutations that suppress the slow growth of class 1 flr mutants. This study revealed that flr-2 gene controls antibacterial defense and intestinal color, confirming that flr-2 regulates intestinal functions. flr-2 encoded the only glycoprotein hormone alpha subunit in C. elegans and was expressed in certain neurons. Furthermore, FLR-2 bound to another secretory protein GHI-1, which belongs to a family of lipid- and lipopolysaccharide-binding proteins. A ghi-1 deletion mutation partially suppressed the short defecation cycle periods of class 1 flr mutants, and this effect was enhanced by flr-2 mutations. Thus, FLR-2 acts as a signaling molecule for the neural control of intestinal functions, which is achieved in a functional network involving class 1 and class 2 flr genes as well as ghi-1. These results are informative to studies of glycoprotein hormone signaling in higher animals. [source]


    Electroaddressing of Cell Populations by Co-Deposition with Calcium Alginate Hydrogels

    ADVANCED FUNCTIONAL MATERIALS, Issue 13 2009
    Xiao-Wen Shi
    Abstract Electroaddressing of biological components at specific device addresses is attractive because it enlists the capabilities of electronics to provide spatiotemporally controlled electrical signals. Here, the electrodeposition of calcium alginate hydrogels at specific electrode addresses is reported. The method employs the low pH generated at the anode to locally solubilize calcium ions from insoluble calcium carbonate. The solubilized Ca2+ can then bind alginate to induce this polysaccharide to undergo a localized sol-gel transition. Calcium alginate gel formation is shown to be spatially controlled in the normal and lateral dimensions. The deposition method is sufficiently benign that it can be used to entrap the bacteria E. coli. The entrapped cells are able to grow and respond to chemical inducers in their environment. Also, the entrapped cells can be liberated from the gel network by adding sodium citrate that can compete with alginate for Ca2+ binding. The capabilities of calcium alginate electrodeposition is illustrated by entrapping reporter cells that can recognize the quorum sensing autoinducer 2 (AI-2) signaling molecule. These reporter cells were observed to recognize and respond to AI-2 generated from an external bacterial population. Thus, calcium alginate electrodeposition provides a programmable method for the spatiotemporally controllable assembly of cell populations for cell-based biosensing and for studying cell-cell signaling. [source]


    P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures

    GLIA, Issue 3 2009
    Takumi Fujita
    Abstract Cell survival is a critical issue in the onset and progression of neurodegenerative diseases and following pathological events including ischemia and traumatic brain injury. Oxidative stress is the main cause of cell damage in such pathological conditions. Here, we report that adenosine 5,-triphosphate (ATP) protects hippocampal astrocytes from hydrogen peroxide (H2O2)-evoked oxidative injury in astrocyte monocultures. The effect of ATP was prevented by a selective antagonist of or siRNAs against P2Y1R. Interestingly, in astrocyte-neuron cocultures, ATP also produced neuroprotective effects against H2O2 -evoked neuronal cell death, whereas ATP did not produce any neuroprotective effects in monocultures. The ATP-induced neuroprotection in cocultures was completely inhibited by silencing of astrocytic P2Y1R expression, indicating that ATP acts on astrocytes and enhances their neuroprotective functions by activating P2Y1R. Furthermore, this neuroprotective effect was mimicked by applying conditioned medium from astrocytes that had been stimulated by ATP, implying an involvement of diffusible factors from astrocytes. We found that, in both purified astrocyte cultures and astrocyte-neuronal cocultures, ATP and the P2Y1R agonist 2-methylthioadenosine 5, diphosphate (2MeSADP) induced the release of interleukin-6 (IL-6), but this did not occur in neuron monocultures. Moreover, exogenous IL-6 produced a neuroprotective effect, and the neuroprotection induced by P2Y1R-stimulated astrocytes was prevented in the presence of an anti-IL-6 antibody. Taken together, these results suggest that P2Y1R-stimulated astrocytes protect against neuronal damage induced by oxidative stress, and that IL-6 is a crucial signaling molecule released from astrocytes. Thus, activation of P2Y1R in astrocytes may rescue neurons from secondary cell death under pathological conditions. © 2008 Wiley-Liss, Inc. [source]


    Thrombin induces expression of cytokine-induced SH2 protein (CIS) in rat brain astrocytes: Involvement of phospholipase A2, cyclooxygenase, and lipoxygenase

    GLIA, Issue 2 2004
    Kyung-ae Ji
    Abstract Previously we have reported that thrombin induces inflammatory mediators in brain glial cells (Ryu et al. 2000. J Biol Chem 275:29955). In the present study, we found that thrombin induced a negative regulator of a cytokine signaling molecule, cytokine-induced SH2 protein (CIS), in rat brain astrocytes. In response to thrombin, CIS expression was increased at both the mRNA and protein levels. Although STAT5 is known to regulate CIS expression, thrombin did not activate STAT5, and inhibitors of JAK2 (AG490) and JAK3 (WHI-P97 and WHI-P154) had little effect on thrombin-induced CIS expression. In contrast, cytosolic phospholipase A2 (cPLA2), cyclooxygenase (COX), and lipoxygenase (LO) play a role in CIS expression, since inhibitors of cPLA2, cyclooxygenase (COX), and LO significantly reduced CIS expression. Reactive oxygen species (ROS) scavengers (N-acetyl-cysteine [NAC] and trolox) reduced thrombin-induced CIS expression, and inhibitors of COX and LO reduced ROS produced by thrombin. Furthermore, prostaglandin E2 (PGE2) and leukotriene B4 (LTB4), products of COX and LO, respectively, potentiated thrombin-induced CIS expression, indicating that ROS, and PGE2 and LTB4 generated by COX and LO, mediate CIS expression. Since interferon-, (IFN-,)-induced GAS-luciferase activity and tyrosine phosphorylation of STAT1 and STAT3 were lower in CIS-transfected cells compared to control vector-transfected cells, CIS could have anti-inflammatory activity. These data suggest that thrombin-stimulation of ROS and prostaglandin and leukotriene production via the cPLA2, COX and LO pathways results in CIS expression. More importantly, CIS expression may be a negative feedback mechanism that prevents prolonged inflammatory responses. © 2004 Wiley-Liss, Inc. [source]


    Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices

    HIPPOCAMPUS, Issue 7 2009
    J.G. Frade
    Abstract Nitric oxide (,NO) is an intercellular messenger implicated in memory formation and neurodegeneration in the hippocampus. Owing to its physical and chemical properties, the concentration dynamics of ,NO is a critical issue in determining its bioactivity as a signaling molecule. Its production is closely related to glutamate N -methyl- D -aspartate (NMDA) receptors, following a rise in intracellular calcium levels. However, that dependent on ,-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors remains elusive and controversial, despite reports describing a role for these receptors in other brain regions, largely because of lack of quantitative and dynamic measurements of ,NO. Using a ,NO-selective microsensor inserted in the diffusional spread of ,NO in the CA1 region of rat hippocampal slices, we measured its real-time endogenous production, following activation of ionotropic glutamate receptors and under tissue physiological oxygen tension. Both NMDA and AMPA stimulation resulted in a concentration-dependent ,NO production but encompassing distinct kinetics for lag phases and slower rates of ,NO production were observed for AMPA stimulation. Robustness of the results was achieved instrumentally and pharmacologically, by means of nitric oxide synthase (NOS) inhibitors and antagonists of NMDA (D -(,)-2-amino-5-phosphonopentanoic acid, AP5) and AMPA (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide, NBQX) receptors. When using glutamate as a stimulus, ,NO production was of lower magnitude in the presence of AP5 plus NBQX than with AP5 alone, suggesting that even when NMDA receptors are inhibited Ca2+ rises to levels to induce a peak of ,NO from the background. Whereas extracellular Ca2+ was required for the ,NO signals, Philanthotoxin-4,3,3 (PhTX-4,3,3) a toxin used to target Ca2+ -permeable AMPA receptors, attenuated ,NO production. These observations are interpreted on basis of a distinct coupling between the glutamate receptors and neuronal NOS. A role for Ca2+ -permeable AMPA receptors in the Ca2+ activation of neuronal NOS is suggested. © 2008 Wiley-Liss, Inc. [source]


    Transcription factor NF-,B activation after in vivo perforant path LTP in mouse hippocampus

    HIPPOCAMPUS, Issue 6 2004
    Ramiro Freudenthal
    Abstract There is increasing evidence that transcription factors (TFs) play a critical role in maintaining later phases of hippocampal long-term potentiation (LTP). We have been led to study the role in synaptic plasticity of the powerful, yet generally unheralded, NF-,B TF because it may serve as both a signaling molecule after its activation at the synapse and then a transcription initiator upon reaching the nucleus. In the present study, we show that LTP activates NF-,B in the intact mouse hippocampus. Mice were sacrificed 15 min after one of three treatments: tetanization (high-frequency stimulation [HFS]), low-frequency stimulation (LFS), or no stimulated control animals (CT). In a first study, nuclear NF-,B activity from hippocampus was estimated by electrophoretic mobility shift assays (EMSAs). A higher level of hippocampal TF binding to the NF-,B recognition element was found in the HFS group compared with LFS or CT. In a second study, NF-,B activity was evaluated by immunohistochemistry with a specific antibody that recognizes the activated form of NF-,B. This antibody binds to the exposed nuclear location sequence on the p65 subunit of NF-,B consequent to its dissociation from the inhibitory I,B molecule. In the four subfields of hippocampus examined,granule cell layer, hilus of the dentate gyrus, CA3 and CA1 pyramidal fields of the hippocampal gyrus,the highest levels of activated NF-,B, statistically significant in all cases were found after HFS. In certain comparisons, LFS animals also showed significant elevation with respect to CT. These results support the role of NF-,B as part of the synaptic signaling and transcriptional regulation mechanism required in long-term plasticity, emphasizing the combinatorial nature of TF function. © 2004 Wiley-Liss, Inc. [source]


    Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 4 2004
    Melissa R. Dent
    Abstract The phospholipase D (PLD) associated with the cardiac sarcolemmal (SL) membrane hydrolyses phosphatidylcholine to produce phosphatidic acid, an important phospholipid signaling molecule known to influence cardiac function. The present study was undertaken to examine PLD isozyme mRNA expression, protein contents and activities in congestive heart failure (CHF) subsequent to myocardial infarction (MI). MI was induced in rats by occlusion of the left anterior descending coronary artery. At 8 weeks after the surgical procedure, hemodynamic assessment revealed that these experimental rats were at a moderate stage of CHF. Semi-quantitative reverse transcriptase-polymerase chain reaction revealed that PLD1 and PLD2 mRNA amounts were unchanged in viable left ventricular (LV) tissue of the failing heart. Furthermore, this technique demonstrated the presence of PLD1 and PLD2 mRNA in the scar tissue. While SL PLD1 and PLD2 protein contents were elevated in the viable LV tissue of the failing heart, SL PLD1 activity was significantly decreased, whereas SL PLD2 activity was significantly increased. On the other hand, although PLD1 protein was undetectable, PLD2 protein and activity were detected in the scar tissue. Our findings suggest that differential changes in PLD isozymes may contribute to the pathophysiology of CHF and may also be involved in the processes of scar remodeling. [source]


    Inorganic phosphate as a signaling molecule in osteoblast differentiation,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2003
    George R. Beck Jr.
    Abstract The spatial and temporal coordination of the many events required for osteogenic cells to create a mineralized matrix are only partially understood. The complexity of this process, and the nature of the final product, demand that these cells have mechanisms to carefully monitor events in the extracellular environment and have the ability to respond through cellular and molecular changes. The generation of inorganic phosphate during the process of differentiation may be one such signal. In addition to the requirement of inorganic phosphate as a component of hydroxyapatite mineral, Ca10(PO4)6(OH)2, a number of studies have also suggested it is required in the events preceding mineralization. However, contrasting results, physiological relevance, and the lack of a clear mechanism(s) have created some debate as to the significance of elevated phosphate in the differentiation process. More recently, a number of studies have begun to shed light on possible cellular and molecular consequences of elevated intracellular inorganic phosphate. These results suggest a model in which the generation of inorganic phosphate during osteoblast differentiation may in and of itself represent a signal capable of facilitating the temporal coordination of expression and regulation of multiple factors necessary for mineralization. The regulation of protein function and gene expression by elevated inorganic phosphate during osteoblast differentiation may represent a mechanism by which mineralizing cells monitor and respond to the changing extracellular environment. J. Cell. Biochem. 90: 234,243, 2003. Published 2003 Wiley-Liss, Inc. [source]


    Decreased Srcasm expression in hyperproliferative cutaneous lesions

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 3 2009
    Marc C. Meulener
    Background:, Src-family tyrosine kinases (SFKs) are signaling proteins that regulate keratinocyte proliferation and differentiation. Src-activating and signaling molecule (Srcasm) is a recently identified molecule that downregulates SFK activity and promotes keratinocyte differentiation. To determine if Srcasm expression correlates with keratinocyte differentiation, we characterized the level of Srcasm expression in some cutaneous lesions that exhibit increased keratinocyte proliferation. Methods:, Formalin-fixed sections of randomly selected seborrheic keratoses (SKs) and basal cell carcinomas (BCCs) were analyzed for Srcasm and Ki-67 immunohistochemical staining. Anti-Srcasm and anti-Ki-67 stainings were performed in parallel. Results:, All SKs displayed decreased Srcasm staining in areas comprised of basaloid keratinocytes that exhibited an increased Ki-67 index. Higher Srcasm staining levels were detected near pseudohorn cysts where keratinocytes exhibited a lower Ki-67 index. All multicentric and nodular BCCs displayed a prominent loss of Srcasm staining in association with a marked increase in Ki-67 staining. Conclusions:, Our results support the hypothesis that Srcasm protein levels are decreased in the hyperproliferative keratinocytes found in SKs and BCCs. Increased Srcasm protein levels are detected in keratinocytes undergoing differentiation. Decreased Srcasm levels may be part of the pathophysiologic mechanism in cutaneous lesions, exhibiting keratinocyte hyperproliferation. [source]


    Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2008
    Li-Juan Quan
    Abstract Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses. [source]


    Nitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathways

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
    T. A. Mejía-García
    Abstract Nitric oxide (NO) is an important signaling molecule in the CNS, regulating neuronal survival, proliferation and differentiation. Here, we explored the mechanism by which NO, produced from the NO donor S -nitroso-acetyl- d - l -penicillamine (SNAP), exerts its neuroprotective effect in purified cultures of chick retinal neurons. Cultures prepared from 8-day-old chick embryo retinas and incubated for 24 h (1 day in culture, C1) were treated or not with SNAP, incubated for a further 72 h (up to 4 days in culture, C4), fixed, and the number of cells estimated, or processed for cell death estimation, by measuring the reduction of the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Experimental cultures were run in parallel but were re-fed with fresh medium in the absence or presence of SNAP at culture day 3 (C3), incubated for a further 24 h up to C4, then fixed or processed for the MTT assay. Previous studies showed that the re-feeding procedure promotes extensive cell death. SNAP prevented this death in a concentration- and time-dependent manner through the activation of soluble guanylate cyclase; this protection was significantly reversed by the enzyme inhibitors 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or LY83583, and mimicked by 8-bromo cyclic guanosine 5,-phosphate (8Br-cGMP) (GMP) or 3-(5,-hydroxymethyl-2,-furyl)-1-benzyl indazole (YC-1), guanylate cyclase activators. The effect was blocked by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The effect of NO was also suppressed by LY294002, Wortmannin, PD98059, KN93 or H89, indicating the involvement, respectively, of phosphatidylinositol-3 kinase, extracellular-regulated kinases, calmodulin-dependent kinases and protein kinase A signaling pathways. NO also induced a significant increase of neurite outgrowth, indicative of neuronal differentiation, and blocked cell death induced by hydrogen peroxide. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore considered an important mediator of apoptosis and necrosis, as well as boc-aspartyl (OMe) fluoromethylketone (BAF), a caspase inhibitor, also blocked cell death induced by re-feeding the cultures. These findings demonstrate that NO inhibits apoptosis of retinal neurons in a cGMP/protein kinase G (PKG)-dependent way, and strengthens the notion that NO plays an important role during CNS development. [source]


    P2Y receptor-activating nucleotides modulate cellular reactive oxygen species production in dissociated hippocampal astrocytes and neurons in culture independent of parallel cytosolic Ca2+ rise and change in mitochondrial potential

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 15 2007
    Stefan Kahlert
    Abstract With mixed cultures of hippocampal astrocytes and neurons, we investigated the influence of nucleotides on cytosolic Ca2+ level, generation of reactive oxygen species (ROS), and mitochondrial potential. We employed ATP and four purine/pyrimidine derivates, which are P2Y receptor subtype-preferring agonists. Stimulation with ATP, a P2Y1/2/4 receptor agonist in rat, caused a large cytosolic Ca2+ increase in astrocytes and a considerably smaller Ca2+ response in neighboring neurons. The P2Y1 receptor antagonist MRS2179 completely blocked the ATP-induced Ca2+ response in astrocytes and neurons. Application of ATP significantly reduced the mitochondrial potential in neurons, which was not inhibited by MRS2179. Interestingly, MRS2179 mediated a mitochondrial depolarization without affecting the cytosolic Ca2+ level. Stimulation with UDP, a P2Y6 receptor agonist; UTP, a P2Y2/4 receptor agonist; 2MeSATP, a P2Y1 receptor agonist; or 2MeSADP, a P2Y1/12/13 receptor agonist, evoked significant Ca2+ responses in astrocytes but small Ca2+ responses in neurons. In astrocytes, there was an inverse relationship between the amplitude of the cytosolic Ca2+ peak and the rate of ROS generation in response to nucleotide application. Activation with UDP resulted in the highest ROS generation that we detected, whereas 2MeSADP and 2MeSATP reduced the ROS generation below the basal level. 2MeSADP and UDP caused mitochondrial depolarization of comparable size. Thus, neither in astrocytes nor in neurons did the degree of mitochondrial depolarization correlate with ROS generation. Nucleotides acting via P2Y receptors can modulate ROS generation of hippocampal neurons without acutely changing the cytosolic Ca2+ level. Thus, ROS might function as a signaling molecule upon nucleotide-induced P2Y receptor activation in brain. © 2007 Wiley-Liss, Inc. [source]


    Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 7 2008
    Ankita Desai
    Abstract The objective of this study was to examine augmentation of therapeutic activity in human glioblastoma cells with combination of paclitaxel (PTX) and the apoptotic signaling molecule, C6 -ceramide (CER), when administered in novel oil-in-water nanoemulsions. The nanoemulsions were formulated with pine-nut oil, which has high concentrations of essential polyunsaturated fatty acid (PUFA). Drug-containing nanoemulsions were characterized for particle size, surface charge, and the particle morphology was examined with transmission electron microscopy (TEM). Epi-fluorescent microscopy was used to analyze nanoemulsion-encapsulated rhodamine-labeled PTX and NBD-labeled CER uptake and distribution in U-118 human glioblastoma cells. Cell viability was assessed with the MTS (formazan) assay, while apoptotic activity of PTX and CER was evaluated with caspase-3/7 activation and flow cytometry. Nanoemulsion formulations with the oil droplet size of approximately 200 nm in diameter were prepared with PTX, CER, and combination of the two agents. When administered to U-118 cells, significant enhancement in cytotoxicity was observed with combination of PTX and CER as compared to administration of individual agents. The increase in cytotoxicity correlated with enhancement in apoptotic activity in cells treated with combination of PTX and CER. The results of these studies show that oil-in-water nanoemulsions can be designed with combination therapy for enhancement of cytotoxic effect in brain tumor cells. In addition, PTX and CER can be used together to augment therapeutic activity, especially in aggressive tumor models such as glioblastoma. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:2745,2756, 2008 [source]


    Ethanol Blocks Adenosine Uptake via Inhibiting the Nucleoside Transport System in Bronchial Epithelial Cells

    ALCOHOLISM, Issue 5 2009
    Diane S. Allen-Gipson
    Background:, Adenosine uptake into cells by nucleoside transporters plays a significant role in governing extracellular adenosine concentration. Extracellular adenosine is an important signaling molecule that modulates many cellular functions via 4 G-protein-coupled receptor subtypes (A1, A2A, A2B, and A3). Previously, we demonstrated that adenosine is critical in maintaining airway homeostasis and airway repair and that airway host defenses are impaired by alcohol. Taken together, we hypothesized that ethanol impairs adenosine uptake via the nucleoside transport system. Methods:, To examine ethanol-induced alteration on adenosine transport, we used a human bronchial epithelial cell line (BEAS-2B). Cells were preincubated for 10 minutes in the presence and absence of varying concentrations of ethanol (EtOH). In addition, some cells were pretreated with S-(4-Nitrobenzyl)-6-thioinosine (100 ,M: NBT), a potent adenosine uptake inhibitor. Uptake was then determined by addition of [3H]-adenosine at various time intervals. Results:, Increasing EtOH concentrations resulted in increasing inhibition of adenosine uptake when measured at 1 minute. Cells pretreated with NBT effectively blocked adenosine uptake. In addition, short-term EtOH revealed increased extracellular adenosine concentration. Conversely, adenosine transport became desensitized in cells exposed to EtOH (100 mM) for 24 hours. To determine the mechanism of EtOH-induced desensitization of adenosine transport, cAMP activity was assessed in response to EtOH. Short-term EtOH exposure (10 minutes) had little or no effect on adenosine-mediated cAMP activation, whereas long-term EtOH exposure (24 hours) blocked adenosine-mediated cAMP activation. Western blot analysis of lysates from unstimulated BEAS-2B cells detected a single 55 kDa band indicating the presence of hENT1 and hENT2, respectively. Real-time RT-PCR of RNA from BEAS-2B revealed transcriptional expression of ENT1 and ENT2. Conclusions:, Collectively, these data reveal that acute exposure of cells to EtOH inhibits adenosine uptake via a nucleoside transporter, and chronic exposure of cells to EtOH desensitizes the adenosine transporter to these inhibitory effects of ethanol. Furthermore, our data suggest that inhibition of adenosine uptake by EtOH leads to an increased extracellular adenosine accumulation, influencing the effect of adenosine at the epithelial cell surface, which may alter airway homeostasis. [source]


    Chaperone and anti-chaperone: Two-faced synuclein as stimulator of synaptic evolution

    NEUROPATHOLOGY, Issue 5 2006
    Masayo Fujita
    Previous studies have shown that ,-synuclein (,-syn), the homologue of ,-syn, inhibited ,-syn aggregation and stabilized Akt cell survival signaling molecule, suggesting that ,-syn was protective against ,-syn-related neurodegenerative disorders, such as Parkinson's disease and diffuse Lewy body disease. However, emerging evidence argues that the situation may be not so simple. Two missense mutations of ,-syn were identified in familial and sporadic diffuse Lewy body disease, and wild type ,-syn was induced to form fibril structures in vitro, while, ,-syn was shown to be protective against neurodegeneration caused by deletion of cysteine-string protein-,, the presynaptic cochaperone to Hsc70 in mice. Collectively, ,- and ,-syn are both, but in varying degrees, featured with two opposite properties, namely normal chaperone and anti-chaperone. By reviewing recent progress in syn biology with a particular focus on ,-syn, this manuscript refers to the intriguing possibility that the dual syn proteins might have acquired a driving force for synaptic evolution. Hypothetically, the anti-chaperone syn may provoke stress-induced diverse responses, whereas, the chaperone syn may provide buffering for them, allowing accumulation of nonlethal phenotypic variations in synapses. Consequently, dual syn proteins may cope with forth-coming stresses in the brain by stimulating adaptive evolution. In this context, failure to regulate this process due to various causes, such as gene mutations and environmental risk factors, may result in imperfect adaptability against stresses, leading to neurodegenerative disorders. [source]


    Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 22 2006
    Tariq Mahmood
    Abstract Plants exhibit resistance against incompatible pathogens, via localized and systemic responses as part of an integrated defense mechanism. To study the compatible and incompatible interactions between rice and bacteria, a proteomic approach was applied. Rice cv. Java 14 seedlings were inoculated with compatible (Xo7435) and incompatible (T7174) races of Xanthomonasoryzae pv. oryzae (Xoo). Cytosolic and membrane proteins were fractionated from the leaf blades and separated by 2-D PAGE. From 366 proteins analyzed, 20 were differentially expressed in response to bacterial inoculation. These proteins were categorized into classes related to energy (30%), metabolism (20%), and defense (20%). Among the 20 proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) was fragmented into two smaller proteins by T7174 and Xo7435 inoculation. Treatment with jasmonic acid (JA), a signaling molecule in plant defense responses, changed the level of protein accumulation for 5 of the 20 proteins. Thaumatin-like protein and probenazole-inducible protein (PBZ) were commonly up-regulated by T7174 and Xo7435 inoculation and JA treatment. These results suggest that synthesis of the defense-related thaumatin-like protein and PBZ are stimulated by JA in the defense response pathway of rice against bacterial blight. [source]


    Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development

    THE PLANT JOURNAL, Issue 1 2005
    Corinna Thurow
    Summary Salicylic acid (SA) is a crucial internal signaling molecule needed for the induction of plant defense responses upon attack of a variety of pathogens. Basic leucine zipper transcription factors of the TGA family bind to activating sequence-1 (as-1) -like elements which are SA-responsive cis elements found in promoters of ,immediate early' and ,late' SA-inducible genes. TGA2.2 constitutes the main component of tobacco as -1 -binding factor-1 (ASF-1). TGA2.1, which differs from TGA2.2 by being able to activate transcription in yeast, constitutes a minor fraction of the complex. Both proteins interact with NPR1, a protein essential for SA inducibility of ,late' genes. Here we demonstrate using dsRNAi mediated gene silencing that reducing the amount of TGA2.2 and TGA2.1 correlates with a significant decrease in ASF-1 activity and with a decreased inducibility of both ,immediate early' and ,late' genes. In contrast, reducing the amount of TGA2.1 alone had no effect on the expression of these target genes suggesting that TGA2.1 is dispensable for SA-inducible gene expression from the as-1 element. Expression of a TGA2.2 mutant unable to form heterodimers with the endogenous pool of TGA factors led to reduced SA-inducibility of ,immediate early' gene Nt103, indicating that the native leucine zipper is important for the protein to act positively on transcription. Plants with reduced amounts of TGA2.1 developed petal like stamens indicating a regulatory role of TGA2.1 in defining organ identity in tobacco flowers. A model is suggested that unifies conflicting results on the function of tobacco TGA factors with respect to activation of the ,late'PR-1a promoter. [source]


    Immunohistochemical appearance of HNE-protein conjugates in human astrocytomas

    BIOFACTORS, Issue 1-4 2005
    Kamelija Zarkovic
    Abstract Gliomas are tumors originating from astrocytes, oligodendrocytes or ependimal cells. Those of astrocytic origin are the most widespread of primary brain tumors and account for more then 60% of all CNS neoplasms. The current state of knowledge on the associations between tumor etiology and oxidative stress suggests that environmental factors that cause oxidative stress could also induce and promote cancer, especially in case of hereditary predisposition. Among mediators of oxidative stress, lipid peroxidation product 4-hydroxynonenal (HNE) is of particular relevance in oncology, as it is known to act as a growth-regulating factor and a signaling molecule. The aim of present study was to investigate by immunohistochemistry the presence of HNE-modified proteins in different types of astrocytoma. Our study comprised 45 astrocytic tumors. These tumors were graded in accordance with the WHO classification as diffuse astrocytomas (DA), anaplastic astrocytomas (AA) and glioblastomas (GB), while each group comprised 15 tumors. Slides of paraffin-embedded tumor tissue were stained with hematoxylin-eosin or were prepared for immunohistochemistry with monoclonal antibodies to HNE-histidine conjugate. Positive immunohistochemical reaction to HNE was analyzed semi-quantitatively. HNE positivity was proportional with malignancy of astrocytomas. The weakest presence of HNE-histidine adducts was found in DA, followed by AA and GB. Lowest intensity of HNE immunopositivity was present in tumor cells of almost all DA, predominantly around blood vessels. In malignant variants of astrocytoma, AA and GB, HNE positivity was moderate to strong, and diffusely distributed in all tumors. [source]


    Control of microbial attachment by inhibition of ATP and ATP-mediated autoinducer-2

    BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010
    Huijuan Xu
    Abstract In this study, 2,4-dinitrophenol (DNP), a typical chemical uncoupler, was employed to investigate the possible roles of ATP and autoinducer-2 (AI-2) of suspended microorganisms in attachment onto nylon membrane and glass slide surfaces. Results showed that DNP could disrupt ATP synthesis, subsequently led to a reduced production of AI-2 which is a common signaling molecule for cellular communication. Attachment of suspended microorganisms exposed to DNP was significantly suppressed as compared to microorganisms without contact with DNP. These suggest that an energized state of suspended microorganisms would favor microbial attachment to both nylon membrane and glass slide surfaces. The extent of microbial attachment was found to be positively related to the AI-2 content of microorganisms. This study offers insights into the control of biofouling by preventing initial microbial attachment through inhibition of energy metabolism. Biotechnol. Bioeng. 2010;107: 31,36. © 2010 Wiley Periodicals, Inc. [source]