Home About us Contact | |||
Signal Transduction Molecule (signal + transduction_molecule)
Selected AbstractsExpression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migrationJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2004Lijun Chen Abstract One of our previous studies indicated that the expression of ,-catenin, which is the key factor of wnt-frizzled pathway, increased significantly in the ischemic area of the rat heart 7 days after myocardial infarction (MI). Together with the results of other recent studies, we made an assumption that wnt-frizzled pathway may be involved in the controlled cell proliferation and migration during repair processes after MI. To verify this assumption we tried to investigate the expression of another signal transduction molecule called Dishevelled in wnt-frizzled pathway during the wound healing process after MI. The left descending coronary arteries of rats were ligated to induce MI. Immunohistochemistry SABC method and in situ hybridization were performed to detect the expression of Dishevelled-1. The results showed, that one day after MI, Dishevelled-1 mRNA but not protein expression was detected in the cells at the border zone of the infarction area; 4 days after MI the expression of Dishevelled-1 increased exclusively and cytoplasmic Dishevelled-1 was observed not only at the border zone but also in the infarct area; 7 days after MI, it seems that the expression reached its peak, the positive staining even spread into the endothelial and smooth muscle cells of the newly formed and pre-existing blood vessels in the infarction area; after that the Dishevelled-1 expression decreased abruptly and could hardly be detected 28 days after MI. Thus cytoplasmic Dishevelled-1 may be involved in the controlled proliferation and migration of myofibroblasts and vascular endothelial cells, hence play a role during the wound healing process after MI. [source] Mechanism and biological significance of CD44 cleavageCANCER SCIENCE, Issue 12 2004Osamu Nagano There are multiple steps in the metastasis of cancer cells. Tumor cells must first detach from the tumor mass and invade the surrounding extracellular matrix (ECM). In this step, cell surface adhesion molecules play an important role in the interaction between the cells and their microenvironments. CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and is implicated in a wide variety of physiological and pathological processes. Recently, proteolytic cleavages of CD44 have been emerging as key regulatory events for the CD44 dependent cell-matrix interaction and signaling pathway. CD44 undergoes sequential proteolytic cleavages in the ectodomain and intramem-branous domain, resulting in the release of a CD44 intracellular domain (ICD) fragment. The ectodomain cleavage of CD44 is triggered by multiple stimulations and contributes to the regulation of cell attachment to and migration on HA matrix. The ectodomain cleavage subsequently induces the intramembranous cleavage, which is mediated by presenilin (PS)-dependent y-secre-tase. The intramembranous cleavage generates CD44ICD, which acts as a signal transduction molecule; it is translocated to the nucleus and activates transcription. An understanding of the underlying mechanism of these cleavages of CD44 could provide novel therapeutic targets for cancer cell invasion and metastasis. [source] The phosphatidylinositol 3-kinase,Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial functionCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2010Hua-Pei Song Summary 1.,After a severe burn, a marked decrease in myocardial blood flow results in ischaemic and hypoxic injury, which subsequently leads to apoptosis or necrosis. Phosphatidylinositol 3-kinase (PI3-K)/Akt is an important intracellular signal transduction molecule that regulates cell proliferation, differentiation, glucose metabolism and migration. However, the function and mechanisms of the PI3-K,Akt pathway in cardiomyocyte apoptosis after a burn remain unclear. 2.,In the present study, an in vivo rat model of burn injury and an in vitro hypoxic model using rat cardiomyocytes were established. In burned rats, the expression of PI3-K and phosphorylated (p-) Akt expression increased, as did myocardial apoptosis. Inhibition of the PI3-K,Akt pathway with 1.4 mg/kg LY294002 caused a significant increase in the myocardial apoptotic index compared with hypoxia alone in the in vivo model. 3.,Cardiomyocytes cultured under hypoxic conditions exhibited increased apoptosis, decreased cell viability, enhanced caspase 3 activity, a decreased mitochondrial membrane potential, increased cytoplasmic calcium transients and increased p53 and Bax mRNA expression. Pretreatment with 50 ,mol/L LY294002 significantly enhanced all these negative indicators compared with hypoxia alone. In contrast, pretreatment of cells with 200 ng/mL insulin-like growth factor-1, an activator of PI3-K,Akt, significantly ameliorated the effects of hypoxia, although control levels were not reached. 4.,These findings indicate that activation of the PI3-K,Akt pathway induced by ischaemia and hypoxia after a severe burn can protect cardiomyocytes from apoptosis. This anti-apoptotic effect is most likely mediated via the mitochondria and changes in p53 and Bax gene expression, intracellular [Ca2+] and caspase 3 activity. [source] Sexual dimorphism of g-protein subunit Gng13 expression in the cortical region of the developing mouse ovaryDEVELOPMENTAL DYNAMICS, Issue 7 2007Akihiro Fujino Abstract In our search for genes required for the development and function of mouse gonads, we identified Gng13 (guanine nucleotide binding protein 13, gamma), a gene with an embryonic expression pattern highly restricted to the ovary. Based on reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization, Gng13 is expressed in both XX and XY gonads at embryonic day (E) 11.5, but becomes up-regulated in the XX gonad by E12.5. Expression is retained after treatment with busulfan, a chemical known to eliminate germ cells, pointing to the soma as a site of Gng13 transcription. In situ hybridization of embryonic ovarian tissue sections further localized the expression to the cortex of the developing XX gonad. Gng13 expression in the adult is also highly restricted. Northern blot analyses and Genomic Institute of the Novartis Research Foundation expression profiling of adult tissues detected very high expression in the cerebrum and cerebellum, in addition to, a weaker signal in the ovary. Gng13 belongs to a well-known family of signal transduction molecules with functions in many aspects of development and organ physiology. Here, we report that, in the developing mouse embryo, expression of Gng13 mRNA is highly restricted to the cortex of the XX gonad during sexual differentiation, suggesting a role for this gene during ovarian development. Developmental Dynamics 236:1991,1996, 2007. © 2007 Wiley-Liss, Inc. [source] Immunohistochemical analysis of receptor tyrosine kinase signal transduction activity in chordomaNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2008J. H. Fasig Aims: Currently, there are no effective chemotherapeutic protocols for chordoma. Reports of receptor tyrosine kinase (RTK) expression in chordoma suggest that these tumours may respond to kinase inhibitor therapy. However, RTK signalling activity has not been extensively investigated in chordoma. Methods: A tissue microarray containing 21 cases of chordoma was analysed for expression of a number of proteins involved in signal transduction from RTKs by immunohistochemistry. Results: Platelet-derived growth factor receptor-,, epidermal growth factor receptor (EGFR), KIT and HER2 were detected in 100%, 67%, 33% and 0% of cases, respectively. Platelet-derived growth factor receptor-, staining was of moderate-to-strong intensity in 20 of 21 cases. In contrast, KIT immunoreactivity was weak and focal in each of the seven positive cases. Total EGFR staining was variable; weak staining for phosphorylated EGFR was detected in nine cases. Phosphorylated isoforms of p44/42 mitogen-activated protein kinase, Akt and STAT3, indicative of tyrosine kinase activity, were detected in 86%, 76% and 67% of cases, respectively. Conclusions: Chordomas commonly express RTKs and activated signal transduction molecules. Although there were no statistically significant correlations between the expression of any of the markers studied and disease-free survival or tumour location, the results nonetheless indicate that chordomas may respond to RTK inhibitors or modulators of other downstream signalling molecules. [source] Reactive oxygen signaling and abiotic stressPHYSIOLOGIA PLANTARUM, Issue 3 2008Gad Miller Reactive oxygen species (ROS) play a dual role in plant biology acting on the one hand as important signal transduction molecules and on the other as toxic by-products of aerobic metabolism that accumulate in cells during different stress conditions. Because of their toxicity as well as their important signaling role, the level of ROS in cells is tightly controlled by a vast network of genes termed the ,ROS gene network'. Using mutants deficient in key ROS-scavenging enzymes, we have defined a signaling pathway that is activated in cells in response to ROS accumulation. Interestingly, many of the key players in this pathway, including different zinc finger proteins and WRKY transcription factors, are also central regulators of abiotic stress responses involved in temperature, salinity and osmotic stresses. Here, we describe our recent findings and discuss how ROS integrate different signals originating from different cellular compartments during abiotic stress. [source] |