Home About us Contact | |||
Signal Traits (signal + trait)
Selected AbstractsDivergence in Female Duetting Signals in the Enchenopa binotata Species Complex of Treehoppers (Hemiptera: Membracidae)ETHOLOGY, Issue 12 2006Rafael L. Rodríguez Sexual communication often involves signal exchanges between the sexes, or duetting, in which mate choice is expressed through response signals. With both sexes acting as signalers and receivers, variation in the signals of males and females may be important for mate choice, reproductive isolation, and divergence. In the Enchenopa binotata species complex , a case study of sympatric speciation in which vibrational duetting may have an important role , male signals are species-specific, females choose among males on the basis of signal traits that reflect species and individual differences, and female preferences have exerted divergent selection on male signals. Here, we describe variation in female signals in the E. binotata species complex. We report substantial species differences in the spectral and temporal features of female signals, and in their timing relative to male signals. These differences were similar in range to differences in male signals in the E. binotata complex. We consider processes that might contribute to divergence in female signals, and suggest that signal evolution in the E. binotata complex may be influenced by mate choice in both sexes. [source] HOST SHIFTS AND THE BEGINNING OF SIGNAL DIVERGENCEEVOLUTION, Issue 1 2008Rafael L. Rodríguez Divergence between populations adapting to different environments may be facilitated when the populations differ in their sexual traits. We tested whether colonizing a novel environment may, through phenotypic plasticity, change sexual traits in a way that could alter the dynamics of sexual selection. This hypothesis has two components: changes in mean phenotypes across environments, and changes in the genetic background of the phenotypes that are produced,or genotype × environment interaction (G × E). We simulated colonization of a novel environment and tested its effect on the mating signals of a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae), a clade that has diverged in a process involving host plant shifts and signal diversification. We found substantial genetic variation and G × E in most signal traits measured, with little or no change in mean signal phenotypes. We suggest that the expression of extant genetic variation across old and novel environments can initiate signal divergence. [source] Male choice generates stabilizing sexual selection on a female fecundity correlateJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2007S. F. CHENOWETH Abstract We know very little about male mating preferences and how they influence the evolution of female traits. Theory predicts that males may benefit from choosing females on the basis of traits that indicate their fecundity. Here, we explore sexual selection generated by male choice on two components of female body size (wing length and body mass) in Drosophila serrata. Using a dietary manipulation to alter female size and 828 male mate choice trials, we analysed linear and nonlinear sexual selection gradients on female mass and wing length. In contrast to theoretical expectations and prevailing empirical data, males exerted stabilizing rather than directional sexual selection on female body mass, a correlate of fecundity. Sexual selection was detected only among females with access to standard resource levels as an adult, with no evidence for sexual selection among resource-depleted females. Thus the mating success of females with the same body mass differed depending upon their access to resources as an adult. This suggests that males in this species may rely on signal traits to assess body mass rather than assessing it directly. Stabilizing rather than directional sexual selection on body mass together with recent evidence for stabilizing sexual selection on candidate signal traits in this species suggests that females may trade-off resources allocated to reproduction and sexual signalling. [source] |