Simultaneous Removal (simultaneous + removal)

Distribution by Scientific Domains


Selected Abstracts


Organic carbon and nitrogen removal in anoxic/oxic-membrane bioreactor treating high-strength wastewater

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2009
Zhimin Fu
Abstract The performance of an anoxic/oxic membrane bioreactor system for the simultaneous removal of nitrogen and chemical oxygen demand (COD) was investigated. This process removed up to 87% of total nitrogen (TN) and 94% of COD, with the influent concentrations of 200 mg NH4+ -N/L and 4000 mg COD/L and a recycle ratio (R) of 200%. Biological assimilation and simultaneous nitrification and denitrification (SND) were considered on nitrogen removal process. The TN removal efficiency was above 87.5%, while the nitrogen being removed through SND was above 75.5% and nitrogen assimilated into the biomass was below 24.5%, with influent concentration below 200 mg NH4+ -N/L. Increasing the influent concentration to 400 mg NH4+ -N/L, TN removal efficiency decreased significantly to 37.5%, of which 49.5% was provided by microorganism growth. Batch experiments provided evidence for the phenomena of SND. Furthermore, the SND removal efficiency increased gradually from 26.8 to 90.0%. © 2008 American Institute of Chemical Engineers Environ Prog, 2009 [source]


Optimization of the simultaneous removal of nitrogen and organic matter from fishery wastewaters

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2005
Estrella Aspé
Abstract Anaerobic treatment of saline and protein-rich effluents reduces the organic concentration but forms ammonium that hinders nitrogen removal in a later aerobic treatment. The goal of this work was to optimize the design of a denitrifying,nitrifying system for the simultaneous removal of organic matter and nitrogenous compounds from fishery effluents to meet the Chilean legal standards and to compare pre- and postdenitrification processes in the biological treatment of high-strength effluents to minimize the total volume of biological reactors required. A predenitrifying system, that included three reactors,acidifying anaerobic filter, denitrifying (anoxic) filter, and aerobic-active sludge (nitrifying reactor) with recycle to the denitrifying reactor,reduced nitrogen to 0.33 g of total ammonia nitrogen (TAN) L,1, well above the allowed 0.05 g total nitrogen L,1. The predenitrifying system with a second denitrifying reactor, to which organic matter was added, met the legal organic matter and nitrogen emission concentrations (0.042 g TAN L,1). Conversions were 99.0, 92.5, 90.9, and 99.0% for the anaerobic digestion, first denitrification, nitrification, and second denitrification, respectively. © 2005 American Institute of Chemical Engineers Environ Prog, 2005 [source]


Inhibition of sulfide on the simultaneous removal of nitrate and p -cresol by a denitrifying sludge

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2008
Edna R Meza-Escalante
Abstract BACKGROUND: Many industrial discharges, such as those generated from petrochemical refineries, contain large amounts of sulfurous, nitrogenous and organic contaminants. Denitrification has emerged as a suitable technology for the simultaneous removal of these pollutants in a single reactor unit; however, more evidence is demanded to clarify the limitations of denitrification on the simultaneous removal of sulfide and phenolic contaminants and to optimize the biological process. The aim of this study was to evaluate the capacity of a denitrifying sludge to simultaneously convert sulfide and p -cresol via denitrification. RESULTS: Sulfide was the preferred electron donor over p -cresol, imposing a 5 h lag phase (required for complete sulfide removal) on organotrophic denitrification. Addition of sulfide (20 mg S2, L,1) to p -cresol-amended denitrifying cultures also decreased the reduction rate of nitrate and nitrite, as well as the production rate of nitrogen gas. Nitrite reduction rate was the most affected step by sulfide, decreasing from 35 to 21 mg N (g VSS d),1. A synergistic inhibitory effect of nitrate and sulfide was also observed on nitrite reduction. Despite the effects of sulfide on the respiratory rates monitored, complete removal of nitrate, sulfide and p -cresol could be achieved after 48 h of incubation. CONCLUSION: Our results suggest that simultaneous removal of sulfide and p -cresol could be achieved in denitrifying reactors, but a large hydraulic residence time may be required to sustain an efficient process due to inhibitory effects of sulfide. Copyright © 2008 Society of Chemical Industry [source]


The synergetic effect of plasma and catalyst on simultaneous removal of SO2 and NOx

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010
Jun Han
Abstract For the requirements of nitric oxide(NOx) and sulfur dioxide(SO2) removal in coal-fired power plant, a new nonthermal plasma system combined with catalyst was developed. Moreover, the effect of parameters such as temperature, atmosphere, residence time and additives (NH3 and methanol) on NOx (NO and NO2) and SO2 conversion rate was also experimentally evaluated. The results indicated that the new system could greatly promote the NOx conversion rate. As for SO2, the new system only had a slight influence. High temperature suppressed the NO oxidization and slightly promoted the SO2 oxidation. The long residence time was beneficial to the NOx and SO2 oxidization. In the absence of water, the additive of NH3 can improve NO, NOx and SO2 oxidization rate due to the reactions between NH3 and NOx or SO2. Contrary to NH3, methanol had a negative effect on NOx and SO2 oxidization. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Simultaneous Catalytic Removal of Nitrogen Oxides and Soot from Diesel Exhaust Gas over Potassium Modified Iron Oxide

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2003
S. Kureti
Abstract Iron oxide modified by potassium, i.e. Fe1.9K0.1O3, exhibits high catalytic performance for the simultaneous conversion of soot and NOx into CO2 and N2. The present study shows that long-time treatment of the catalyst leads to a drastic decrease in the activity, whereas even the aged catalyst maintains considerable activity. On the other hand, long-time treatment causes selective N2 formation, i.e. no more formation of the byproduct N2O. This alteration of catalytic performance is likely due to agglomeration of the promoter potassium being present at the surface of catalyst. Detailed experiments were carried out with a more realistic diesel model exhaust gas to confirm that Fe1.9K0.1O3 is a suitable catalyst for the simultaneous removal of soot and NOx between 350 and 480 °C. It was assumed that (CO) intermediates, formed by the catalytic reaction of NOx and oxygen with the soot surface, are the reactive species in NOx -soot conversion. [source]