Home About us Contact | |||
Simulation Predictions (simulation + prediction)
Selected AbstractsTemperature and Pressure Effects on Local Structure and Chain Packing in cis -1,4-Polybutadiene from Detailed Molecular Dynamics SimulationsMACROMOLECULAR THEORY AND SIMULATIONS, Issue 5 2006Georgia Tsolou Abstract Summary: We present results for the temperature and pressure dependence of local structure and chain packing in cis -1,4-polybutadiene (cis -1,4-PB) from detailed molecular dynamics (MD) simulations with a united-atom model. The simulations have been executed in the NPT statistical ensemble with a parallel, multiple time step MD algorithm, which allowed us to access simulation times up to 1 µs. Because of this, a 32 chain C128cis -1,4-PB system was successfully simulated over a wide range of temperature (from 430 to 195 K) and pressure (from 1 atm to 3 kbar) conditions. Simulation predictions are reported for the temperature and pressure dependence of the: (a) density; (b) chain characteristic ratio, Cn; (c) intermolecular pair distribution function, g(r), static structure factor, S(q), and first peak position, Qmax, in the S(q) pattern; (d) free volume around each monomer unit along a chain for the simulated polymer system. These were thoroughly compared against available experimental data. One of the most important findings of this work is that the component of the S(q) vs. q plot representing intramolecular contributions in a fully deuterated cis -1,4-PB sample exhibits a monotonic decrease with q which remains completely unaffected by the pressure. In contrast, the intermolecular contribution exhibits a distinct peak (at around 1.4 Å,1) whose position shifts towards higher q values as the pressure is raised, accompanied by a decrease in its intensity. 3D view of the simulation box containing 32 chains of C128cis -1,4-polybutadiene at density ,,=,0.849 g,·,cm,3 and the conformation of a single C128cis -1,4-PB chain fully unwrapped in space. [source] DIEL RHYTHM OF ALGAL PHOSPHATE UPTAKE RATES IN P-LIMITED CYCLOSTATS AND SIMULATION OF ITS EFFECT ON GROWTH AND COMPETITION1JOURNAL OF PHYCOLOGY, Issue 4 2002Chi-Yong Ahn Oscillations in the phosphate (Pi) uptake rates for three species of green algae were examined in a P-limited cyclostat. For Ankistrodesmus convolutus Corda and Chlorella vulgaris Beyerinck, the Pi uptake rates increased during the daytime and decreased at night. In contrast, Chlamydomonas sp. exhibited the opposite uptake pattern. Cell densities also oscillated under a light:dark cycle, dividing at a species-specific timing rather than continuously. In general, the cell densities exhibited an inverse relationship with the Pi uptake rates. A competition experiment between A. convolutus and C. vulgaris in a P-limited cyclostat resulted in the dominance of C. vulgaris, regardless of the relative initial cell concentrations. Chlorella vulgaris also dominated in a mixed culture with Chlamydomonas sp., irrespective of the initial seeding ratio and dilution rate. However, Chlamydomonas sp. and A. convolutus coexisted in the competition experiment with gradual decrease of Chlamydomonas sp. when equally inoculated. Mathematical expressions of the oscillations in the Pi uptake rate and species-specific cell division gate were used to develop a simulation model based on the Droop equation. The simulation results for each of the species conformed reasonably well to the experimental data. The results of the competition experiments also matched the competition simulation predictions quite well, although the experimental competition was generally more delayed than the simulations. In conclusion, the model simulation that incorporated the effect of diel rhythms in nutrient uptake clearly demonstrated that species diversity could be enhanced by different oscillation patterns in resource uptake, even under the condition of limitation by the same resource. [source] Simulations of Bubble Column Reactors Using a Volume of Fluid Approach: Effect of Air DistributorTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2007M. Abid Akhtar Abstract Two- and three-dimensional numerical simulations have been performed on a laboratory scale bubble column reactor using a volume-of-fluid approach. The effect of hole-size and superficial gas velocity on the bubble size distribution and their trajectories has been investigated on a 20 cm diameter and 1 m high cylindrical reactor. All simulations were performed in a transient manner using a FLUENT solver. Surface tension between two phases has been modelled as a body force with a constant value. Turbulence was modelled using the k-, turbulence approach. A comparison between simulation predictions and the reported experimental studies has shown a good agreement. On a effectué des simulations numériques bi et tridimensionnelles dans un réacteur à colonne à bulles à l'échelle de laboratoire à l'aide d'une approche volume-de-fluide. L'effet de la taille du trou et de la vitesse de gaz superficielle sur la distribution de tailles des bulles et leurs trajectoires a été étudié dans un réacteur cylindrique de 20 cm de diamètre et de 1 m de hauteur. Toutes les simulations ont été réalisées selon un mode transitoire à l'aide du logiciel FLUENT. La tension de surface entre deux phases a été modélisée comme une force volumique avec une valeur constante. La turbulence a été modélisée par la méthode de turbulence k-,. Une comparaison entre les prédictions des simulations et les études expérimentales mentionnées montre un bon accord. [source] Bubble size distribution modeling in stirred gas,liquid reactors with QMOM augmented by a new correction algorithmAICHE JOURNAL, Issue 1 2010Miriam Petitti Abstract Local gas hold-up and bubbles size distributions have been modeled and validated against experimental data in a stirred gas,liquid reactor, considering two different spargers. An Eulerian multifluid approach coupled with a population balance model (PBM) has been employed to describe the evolution of the bubble size distribution due to break-up and coalescence. The PBM has been solved by resorting to the quadrature method of moments, implemented through user defined functions in the commercial computational fluid dynamics code Fluent v. 6.2. To overcome divergence issues caused by moments corruption, due to numerical problems, a correction scheme for the moments has been implemented; simulation results prove that it plays a crucial role for the stability and the accuracy of the overall approach. Very good agreements between experimental data and simulations predictions are obtained, for a unique set of break-up and coalescence kinetic constants, in a wide range of operating conditions. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] |