Home About us Contact | |||
Simulated Runoff (simulated + runoff)
Selected AbstractsGrass-Shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen From Simulated Runoff,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2007Kyle R. Mankin Abstract:, Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass-shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7-year old) RBSs. Nine 1-m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two-segment buffer with native grasses and plum shrub, and two-segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on-site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow-weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass-shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved. [source] The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoffHYDROLOGICAL PROCESSES, Issue 13 2008C. Gregoretti Abstract The debris deposits at the bottom of very steep natural channels and streams in high mountain areas can be mobilized by runoff, triggering a water,sediment mixture flow known as debris flow. The routing of debris flow through human settlements can cause damage to civil structures and loss of human lives. The prediction of such an event, or the runoff discharge that triggers it, assumes an interest in risk analyses and the planning of defence measures. The object of this study is to find a method to determine the critical runoff value that triggers debris flow as a result of channel-bed failure. Historical and rainfall data on 30 debris flows that occurred in six watersheds of the Dolomites (north-eastern Italian Alps) were collected from different sources. Field investigations at the six sites, together with the hydrologic response to the rainfalls that triggered the events, were performed to obtain a realistic scenario of the formation of the debris flow there occurred. Field observations include a survey along the channel of the triggering reach of debris flow, with measurements of the channel slope and cross-section and sampling of debris deposits for grain size distribution. Simulated runoff discharge values based on the rainfall recorded by pluviometers were then compared with values obtained through experimental criteria on the initiation and formation of debris flow by bed failure. The results are discussed to provide a plausible physical-based method for the prediction of the triggering of debris flow by channel-bed failure. Copyright © 2007 John Wiley & Sons, Ltd. [source] Water Resources Modeling of the Ganges-Brahmaputra-Meghna River Basins Using Satellite Remote Sensing Data,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2009Bushra Nishat Nishat, Bushra and S.M. Mahbubur Rahman, 2009. Water Resources Modeling of the Ganges-Brahmaputra-Meghna River Basins Using Satellite Remote Sensing Data. Journal of the American Water Resources Association (JAWRA) 45(6):1313-1327. Abstract:, Large-scale water resources modeling can provide useful insights on future water availability scenarios for downstream nations in anticipation of proposed upstream water resources projects in large international river basins (IRBs). However, model set up can be challenging due to the large amounts of data requirement on both static states (soils, vegetation, topography, drainage network, etc.) and dynamic variables (rainfall, streamflow, soil moisture, evapotranspiration, etc.) over the basin from multiple nations and data collection agencies. Under such circumstances, satellite remote sensing provides a more pragmatic and convenient alternative because of the vantage of space and easy availability from a single data platform. In this paper, we demonstrate a modeling effort to set up a water resources management model, MIKE BASIN, over the Ganges, Brahmaputra, and Meghna (GBM) river basins. The model is set up with the objective of providing Bangladesh, the lowermost riparian nation in the GBM basins, a framework for assessing proposed water diversion scenarios in the upstream transboundary regions of India and deriving quantitative impacts on water availability. Using an array of satellite remote sensing data on topography, vegetation, and rainfall from the transboundary regions, we demonstrate that it is possible to calibrate MIKE BASIN to a satisfactory level and predict streamflow in the Ganges and Brahmaputra rivers at the entry points of Bangladesh at relevant scales of water resources management. Simulated runoff for the Ganges and Brahmaputra rivers follow the trends in the rated discharge for the calibration period. However, monthly flow volume differs from the actual rated flow by (,) 8% to (+) 20% in the Ganges basin, by (,) 15 to (+) 12% in the Brahmaputra basin, and by (,) 15 to (+) 19% in the Meghna basin. Our large-scale modeling initiative is generic enough for other downstream nations in IRBs to adopt for their own modeling needs. [source] Performance assessment of a GCM land surface scheme using a fine-scale calibrated hydrological model: an evaluation of MOSES for the Nile BasinHYDROLOGICAL PROCESSES, Issue 11 2009Mohamed Ezzat Elshamy Abstract Land surface schemes (LSSs) represent the interface between land surface and the atmosphere in general circulation models (GCMs). Errors in LSS-simulated heat and moisture fluxes can result from inadequate representation of hydrological features and the derivation of effective surface parameters for large heterogeneous GCM gridboxes from small-scale observations. Previous assessments of LSS performance have generally compared simulated heat and moisture fluxes to observations over a defined experimental domain for a limited period. A different approach has been evaluated in this study, which uses a fine-resolution calibrated hydrological model of the study basin to provide a quasi-observed runoff series for direct comparison with simulated runoff from a selected LSS at GCM scale. The approach is tested on two GCM gridboxes covering two contrasting regions within the Nile Basin. Performance is mixed; output from the LSS is generally compatible with that of the fine-resolution model for one gridbox while it cannot reproduce the runoff dynamics for the other. The results also demonstrate the high sensitivity of runoff and evapotranspiration to radiation and precipitation inputs and show the importance of subtle issues such as temporal disaggregation of climatic inputs. We conclude that the use of a fine-resolution calibrated model to evaluate a LSS has several advantages, can be generalized to other areas to improve the performance of global models and provides useful data that can be used to constrain LSS parameterizations. Copyright © 2009 John Wiley & Sons, Ltd. [source] Simulating pan-Arctic runoff with a macro-scale terrestrial water balance modelHYDROLOGICAL PROCESSES, Issue 13 2003Michael A. Rawlins Abstract A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan-Arctic. The pan-Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw,freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980,2001. P/WBM-generated maximum summer active-layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1,) seen in field samples. Simulated long-term annual runoffs are in the range 100 to 400 mm year,1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long-term seasonal (winter, spring, summer,fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub-model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd. [source] Grass-Shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen From Simulated Runoff,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2007Kyle R. Mankin Abstract:, Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass-shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7-year old) RBSs. Nine 1-m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two-segment buffer with native grasses and plum shrub, and two-segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on-site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow-weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass-shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved. [source] |