Short-term Plasticity (short-term + plasticity)

Distribution by Scientific Domains


Selected Abstracts


Short-term plasticity in children's speech motor systems

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 8 2006
Bridget Walsh
Abstract Speech production is a highly skilled behavior that requires rapid and coordinated movements of the orofacial articulators. Previous studies of speech development have shown that children have more variable articulatory movements compared to adults, and cross-sectional studies have revealed that a gradual transition to more stable movement patterns occurs with age. The focus of the present investigation is on the potential role of short-term changes in speech motor performance related to practice. Thus we developed a paradigm to examine the influences of phonological complexity and practice on children (9 and 10-year-olds) and adults' production of novel nonwords. Using two indices that reflect the degree of trial-to-trial consistency of articulatory movements, we analyzed the first and last five productions of the novel nonwords. Both children and adults accurately produced the novel nonwords; however, children showed a practice effect; their last five trials were more consistently produced than their first five trials. Adults did not show this practice effect. This study provides new evidence that children show short-term changes in their speech coordinative patterns with practice. In addition, the present findings support the contribution of neuromotor noise or background, inherent variability to speech motor development. © 2006 Wiley Periodicals, Inc. Dev Psychobiol 48: 660,674, 2006. [source]


Short-term plasticity visualized with flavoprotein autofluorescence in the somatosensory cortex of anaesthetized rats

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
Hiroatsu Murakami
Abstract In the present study, short-term plasticity of somatosensory neural responses was investigated using flavoprotein autofluorescence imaging in rats anaesthetized with urethane (1.5 g/kg, i.p.) Somatosensory neural activity was elicited by vibratory skin stimulation (50 Hz for 1 s) applied on the surface of the left plantar hindpaw. Changes in green autofluorescence (, = 500,550 nm) in blue light (, = 450,490 nm) were elicited in the right somatosensory cortex. The normalised maximal fluorescence responses (,F/F) was 2.0 ± 0.1% (n = 40). After tetanic cortical stimulation (TS), applied at a depth of 1.5,2.0 mm from the cortical surface, the responses elicited by peripheral stimulation were significantly potentiated in both peak amplitude and size of the responsive area (both P < 0.02; Wilcoxon signed rank test). This potentiation was clearly observed in the recording session started 5 min after the cessation of TS, and returned to the control level within 30 min. However, depression of the responses was observed after TS applied at a depth of 0.5 mm. TS-induced changes in supragranular field potentials in cortical slices showed a similar dependence on the depth of the stimulated sites. When TS was applied on the ipsilateral somatosensory cortex, marked potentiation of the ipsilateral responses and slight potentiation of the contralateral responses to peripheral stimulation were observed after TS, suggesting the involvement of commissural fibers in the changes in the somatosensory brain maps. The present study clearly demonstrates that functional brain imaging using flavoprotein autofluorescence is a useful technique for investigating neural plasticity in vivo. [source]


Activity-dependent modulation of GABAergic synapses in developing rat spinal networks in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002
Marcelo Rosato-Siri
Abstract The role of activity-dependent plasticity in modulating inhibitory synapses was investigated in embryonic rat spinal cord slice cultures, by chronic exposure to non-NMDA receptor blockers. GABAergic synaptic efficacy in control and chronic-treated cultures was investigated by patch-recordings from visually identified spinal interneurons. In both culture groups proximal stimulation induced the appearance of postsynaptic currents (PSCs), which were fully antagonized by 20 µM bicuculline application and reverse polarity at potential values close to those reported for spontaneous GABAergic PSCs. In chronically treated cells GABAergic evoked PSCs displayed a larger failure rate and a smaller coefficient of variation of mean PSC amplitude, when compared to controls. As opposed to controls, chronic GABAergic evoked PSCs did not facilitate upon paired-pulse stimulation. Facilitation at chronic synapses was observed when extracellular calcium levels were decreased below physiological values (< 2 mM). Kainate was used to disclose any functional differences between control and treated slices. In accordance with the presynaptic action of kainate, the application of this drug along with GYKI, an AMPA receptor selective antagonist, changed, with analogous potency, short-term plasticity of GABAergic synapses from control and treated cultures. Nevertheless, in chronic cultures, the downstream effects of such activation unmasked short-term depression. Ultrastructural analysis of synapses in chronically treated cultures showed a reduction both in symmetric synapses and in the number of vesicles at symmetric terminals. Thus, based on electrophysiological and ultrastructural data, it could be suggested that during the development of spinal circuits, GABAergic synapses are modulated by glutamatergic transmission, and thus implying that excitatory transmission regulates the strength of GABAergic synapses. [source]


Plateau potential-dependent windup of the response to primary afferent stimuli in rat dorsal horn neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
Valérie Morisset
Abstract In the spinal cord, repetitive stimulation of nociceptive afferent fibres induces a progressive build-up of dorsal horn neuron (DHN) responses. This ,action potential windup' is used as a cellular model of central sensitization to pain. It partly relies on synaptic plasticity, being reduced after blocking NMDA and neurokinin receptors. Using intracellular recordings in a slice preparation of the rat spinal cord, we have analysed the implication of an additional non-synaptic component of windup. Primary afferent fibres were electrically stimulated in the dorsal root. Of 47 responding deep DHNs, 17 (36%) produced action potential windup and afterdischarge during consecutive periods of repeated stimuli (0.4,1 Hz) activating high- (n = 13 neurons) and low-threshold (n = 6 neurons) afferent fibres. When the NMDA receptors were blocked, the rate of windup did not change. In all neurons, there was an absolute correlation between expression of windup and the production of calcium-dependent plateau potentials. Sensitization of the DHN response, similar to the synaptically induced windup, was obtained by repetitive intracellular injection of depolarizing current pulses. This intracellularly induced windup had the same pharmacology as the plateau potential. Synaptically induced windup was also abolished by nifedipine, an L-type calcium-channel blocker. Expression of plateau properties in DHNs is therefore a critical component of windup, operating downstream of synaptic processes. Being associated with calcium influx, generation of plateau potentials could be a link between short-term plasticity and the long-term modification of DHN excitability associated with central sensitization. [source]


Developmental alterations in the functional properties of excitatory neocortical synapses

THE JOURNAL OF PHYSIOLOGY, Issue 9 2009
Dirk Feldmeyer
In the neocortex, most excitatory, glutamatergic synapses are established during the first 4,5 weeks after birth. During this period profound changes in the properties of synaptic transmission occur. Excitatory postsynaptic potentials (EPSPs) at immature synaptic connections are profoundly and progressively reduced in response to moderate to high frequency (5,100 Hz) stimulation. With maturation, this frequency-dependent depression becomes progressively weaker and may eventually transform into a weak to moderate EPSP facilitation. In parallel to changes in the short-term plasticity, a reduction in the synaptic reliability occurs at most glutamatergic neocortical synapses: immature synapses show a high probability of neurotransmitter release as indicated by their low failure rate and small EPSP amplitude variation. This high reliability is reduced in mature synapses, which show considerably higher failure rates and more variable EPSP amplitudes. During early neocortical development synaptic vesicle pools are not yet fully differentiated and their replenishment may be slow, thus resulting in EPSP amplitude depression. The decrease in the probability of neurotransmitter release may be the result of an altered Ca2+ control in the presynaptic terminal with a reduced Ca2+ influx and/or a higher Ca2+ buffering capacity. This may lead to a lower synaptic reliability and a weaker short-term synaptic depression with maturation. [source]


Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held

THE JOURNAL OF PHYSIOLOGY, Issue 13 2008
Matthias H. Hennig
Sustained activity at most central synapses is accompanied by a number of short-term changes in synaptic strength which act over a range of time scales. Here we examine experimental data and develop a model of synaptic depression at the calyx of Held synaptic terminal that combines many of these mechanisms (acting at differing sites and across a range of time scales). This new model incorporates vesicle recycling, facilitation, activity-dependent vesicle retrieval and multiple mechanisms affecting calcium channel activity and release probability. It can accurately reproduce the time course of experimentally measured short-term depression across different stimulus frequencies and exhibits a slow decay in EPSC amplitude during sustained stimulation. We show that the slow decay is a consequence of vesicle release inhibition by multiple mechanisms and is accompanied by a partial recovery of the releasable vesicle pool. This prediction is supported by patch-clamp data, using long duration repetitive EPSC stimulation at up to 400 Hz. The model also explains the recovery from depression in terms of interaction between these multiple processes, which together generate a stimulus-history-dependent recovery after repetitive stimulation. Given the high rates of spontaneous activity in the auditory pathway, the model also demonstrates how these multiple interactions cause chronic synaptic depression under in vivo conditions. While the magnitude of the depression converges to the same steady state for a given frequency, the time courses of onset and recovery are faster in the presence of spontaneous activity. We conclude that interactions between multiple sources of short-term plasticity can account for the complex kinetics during high frequency stimulation and cause stimulus-history-dependent recovery at this relay synapse. [source]


Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex

THE JOURNAL OF PHYSIOLOGY, Issue 1 2007
Andreas Frick
The probability of synaptic transmitter release determines the spread of excitation and the possible range of computations at unitary connections. To investigate whether synaptic properties between neocortical pyramidal neurons change during the assembly period of cortical circuits, whole-cell voltage recordings were made simultaneously from two layer 5A (L5A) pyramidal neurons within the cortical columns of rat barrel cortex. We found that synaptic transmission between L5A pyramidal neurons is very reliable between 2 and 3 weeks of postnatal development with a mean unitary EPSP amplitude of ,1.2 mV, but becomes less efficient and fails more frequently in the more mature cortex of ,4 weeks of age with a mean unitary EPSP amplitude of 0.65 mV. Coefficient of variation and failure rate increase as the unitary EPSP amplitude decreases during development. The paired-pulse ratio (PPR) of synaptic efficacy at 10 Hz changes from 0.7 to 1.04. Despite the overall increase in PPR, short-term plasticity displays a large variability at 4 weeks, ranging from strong depression to strong facilitation (PPR, range 0.6,2.1), suggesting the potential for use-dependent modifications at this intracortical synapse. In conclusion, the transmitter release probability at the L5A,L5A connection is developmentally regulated in such a way that in juvenile animals excitation by single action potentials is efficiently transmitted, whereas in the more mature cortex synapses might be endowed with a diversity of filtering characteristics. [source]


Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Hua Yu Sun
Although it is presynaptic, short-term plasticity has been shown at some synapses to depend upon the postsynaptic cell type. Previous studies have reported conflicting results as to whether Schaffer collateral axons have target-cell specific short-term plasticity. Here we investigate in detail the short-term dynamics of Schaffer collateral excitatory synapses onto CA1 stratum radiatum interneurones versus pyramidal cells in acute hippocampal slices from juvenile rats. In response to three stimulus protocols that invoke different forms of short-term plasticity, we find differences in some but not all forms of presynaptic short-term plasticity, and heterogeneity in the short term plasticity of synapses onto interneurones. Excitatory synapses onto the majority of interneurones had less paired-pulse facilitation than synapses onto pyramidal cells across a range of interpulse intervals (20,200 ms). Unlike synapses onto pyramidal cells, synapses onto most interneurones had very little facilitation in response to short high-frequency trains of five pulses at 5, 10 and 20 Hz, and depressed during trains at 50 Hz. However, the amount of high-frequency depression was not different between synapses onto pyramidal cells versus the majority of interneurones at steady state during 2,10 Hz trains. In addition, a small subset of interneurones (approximately 15%) had paired-pulse depression rather than paired-pulse facilitation, showed only depression in response to the high-frequency five pulse trains, and had more steady-state high-frequency depression than synapses onto pyramidal cells or the majority of interneurones. To investigate possible mechanisms for these differences in short-term plasticity, we developed a mechanistic mathematical model of neurotransmitter release that explicitly explores the contributions to different forms of short-term plasticity of the readily releasable vesicle pool size, release probability per vesicle, calcium-dependent facilitation, synapse inactivation following release, and calcium-dependent recovery from inactivation. Our model fits the responses of each of the three cell groups to the three different stimulus protocols with only two parameters that differ with cell group. The model predicts that the differences in short-term plasticity between synapses onto CA1 pyramidal cells and stratum radiatum interneurones are due to a higher initial release probability per vesicle and larger readily releasable vesicle pool size at synapses onto interneurones, resulting in a higher initial release probability. By measuring the rate of block of NMDA receptors by the open channel blocker MK-801, we confirmed that the initial release probability is greater at synapses onto interneurones versus pyramidal cells. This provides a mechanism by which both the initial strength and the short-term dynamics of Schaffer collateral excitatory synapses are regulated by their postsynaptic target cell. [source]