Short Timescale (short + timescale)

Distribution by Scientific Domains


Selected Abstracts


Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2010
Kang-Jun Baeg
Abstract Organic field-effect transistor (FET) memory is an emerging technology with the potential to realize light-weight, low-cost, flexible charge storage media. Here, solution-processed poly[9,9-dioctylfluorenyl-2,7-diyl]-co-(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top-gate/bottom-contact device configuration is reported. A reversible shift in the threshold voltage (VTh) and reliable memory characteristics was achieved by the incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative charges (electrons) at the interface between polystyrene and cross-linked poly(4-vinylphenol). The F8T2 NFGM showed relatively high field-effect mobility (µFET) (0.02,cm2 V,1 s,1) for an amorphous semiconducting polymer with a large memory window (ca. 30,V), a high on/off ratio (more than 104) during writing and erasing with an operation voltage of 80,V of gate bias in a relatively short timescale (less than 1,s), and a retention time of a few hours. This top-gated polymer NFGM could be used as an organic transistor memory element for organic flash memory. [source]


Biogeochemical modelling of the rise in atmospheric oxygen

GEOBIOLOGY, Issue 4 2006
M. W. CLAIRE
ABSTRACT Understanding the evolution of atmospheric molecular oxygen levels is a fundamental unsolved problem in Earth's history. We develop a quantitative biogeochemical model that simulates the Palaeoproterozoic transition of the Earth's atmosphere from a weakly reducing state to an O2 -rich state. The purpose is to gain an insight into factors that plausibly control the timing and rapidity of the oxic transition. The model uses a simplified atmospheric chemistry (parameterized from complex photochemical models) and evolving redox fluxes in the Earth system. We consider time-dependent fluxes that include organic carbon burial and associated oxygen production, reducing gases from metamorphic and volcanic sources, oxidative weathering, and the escape of hydrogen to space. We find that the oxic transition occurs in a geologically short time when the O2 -consuming flux of reducing gases falls below the flux of organic carbon burial that produces O2. A short timescale for the oxic transition is enhanced by a positive feedback due to decreasing destruction of O2 as stratospheric ozone forms, which is captured in our atmospheric chemistry parameterization. We show that one numerically self-consistent solution for the rise of O2 involves a decline in flux of reducing gases driven by irreversible secular oxidation of the crust caused by time-integrated hydrogen escape to space in the preoxic atmosphere, and that this is compatible with constraints from the geological record. In this model, the timing of the oxic transition is strongly affected by buffers of reduced materials, particularly iron, in the continental crust. An alternative version of the model, where greater fluxes of reduced hydrothermal cations from the Archean seafloor consume O2, produces a similar history of O2 and CH4. When climate and biosphere feedbacks are included in our model of the oxic transition, we find that multiple ,Snowball Earth' events are simulated under certain circumstances, as methane collapses and rises repeatedly before reaching a new steady-state. [source]


The apparent temperature response of leaf respiration depends on the timescale of measurements: a study of two cold climate species

PLANT BIOLOGY, Issue 2 2008
D. Bruhn
Abstract Productivity and climate models often use a constant Q10 for plant respiration, assuming tight control of respiration by temperature. We studied the temperature response of leaf respiration of two cold climate species (the Australian tree Eucalyptus pauciflora and the subantarctic megaherb Pringlea antiscorbutica, both measured in a field setting) on a short timescale (minutes) during different times within a diel course, and on a longer timescale, using diel variations in ambient temperature. There were great variations in Q10 depending on measuring day, measuring time and measuring method. When Q10 was calculated from short-term (15 min) manipulations of leaf temperature, the resulting values were usually markedly smaller than when Q10 was calculated from measurements at ambient leaf temperatures spread over a day. While for E. pauciflora, Q10 estimates decreased with rising temperature (corroborating the concept of a temperature-dependent Q10), the opposite was the case for P. antiscorbutica. Clearly, factors other than temperature co-regulate both leaf respiration rates and temperature sensitivity and contribute to diel and seasonal variation of respiration. [source]


The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone

POLYMER INTERNATIONAL, Issue 9 2004
Kate L Harrison
Abstract The effect of the degree of crystallinity on the dynamic mechanical relaxation behaviour (flexural storage modulus and loss tangent) of polycaprolactone has been investigated. The degree of crystallinity was found to determine the temperature of the ,-relaxation process and the relaxation strength of the ,-relaxation. The increase in temperature of the ,-process has been ascribed to constrainment of the amorphous regions of the sample by the crystallites. In accordance with the observed effect of the degree of crystallinity, the origin of the dynamic mechanical ,-relaxation has been ascribed to the amorphous regions of the material. The intensity of the ,-process has also been found to depend on the moisture content, becoming more prominent when moisture is present. In addition, moisture has been shown to penetrate the crystalline regions of the sample over a relatively short timescale, as shown by infrared spectroscopy. Copyright © 2004 Society of Chemical Industry [source]


Quantitative, longitudinal profiling of the primate fecal microbiota reveals idiosyncratic, dynamic communities

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2006
Joy Wireman
Summary We used slot blot hybridization, quantitative polymerase chain reaction (qPCR), and flow cytometry microarrays to quantify specific 16S rDNAs in weekly fecal specimens from four monkeys housed in a research vivarium for periods ranging from five to 8 months. Even in these uniformly housed and fed animals the gut microbiota is idiosyncratic, very dynamic on short timescales, and shows significant positive and negative correlations among some bacteria as well as responses to heavy metal exposure. The relative quantification (fmol targets per total fmol bacterial 16S rDNA) afforded by flow cytometry microarrays agreed well with the absolute quantification (nanogram of target DNA per nanogram of fecal DNA) afforded by slot blots and qPCR. We also noted strengths and weaknesses in inter-method comparisons for DNA-based quantification of these complex bacterial communities. [source]


Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper,nickel smelters

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2008
J. K. ERÄNEN
Abstract Adaptations to pollution among long-lived trees have rarely been documented, possibly because of their long reproductive cycles and the evolutionarily short timescales of anthropogenic pollution. Here, I present the results of a greenhouse experiment that suggest rapid evolutionary adaptation of mountain birch [Betula pubescens subsp. czerepanovii (Orlova) Hämet-Ahti] to heavy metal (HM) stress around two copper,nickel smelters in NW Russia. The adaptation incurs a cost with reduced performance of adapted seedlings in pristine conditions. The industrial barrens around the studied smelters are extremely high-stress sites with low seed germination and survival. It is likely that strong natural selection has eliminated all sensitive genotypes within one or two generations, with only the most tolerant individuals persisting and producing adapted seeds in the individual barrens. The results were similar from around both smelters, suggesting parallel evolution towards HM resistance. [source]


Surface images of the short period contact binary AE Phe

ASTRONOMISCHE NACHRICHTEN, Issue 3 2004
J. R. Barnes
Abstract We present high resolution Doppler images of the short period (P = 0.362 d) contact binary AE Phe. Using least squares deconvolution, we make use of the information content of the several thousand lines in each échelle spectrum to obtain the necessary S/N and time resolution required to resolve individual starspot features. A single pair of rotationally broadened profiles (free of sidelobes due to blending) with a typical S/N of 3000 - 4000 per spectrum is thus obtained. With 300 sec exposures we achieve a cadence of 350 sec which is equivalent to sampling the rotation phase every 4°. We derive images for four nights of data which reveal starspots at most latitudes on both components of the common envelope system. Individual starspots evolve significantly on very short timescales, of order one day; significantly faster than the week timescales found on active single stars and the Sun. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]