Shoulder Flexion (shoulder + flexion)

Distribution by Scientific Domains


Selected Abstracts


Reliability of the V-scope system in the measurement of arm movement in children with obstetric brachial plexus palsy

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 11 2006
Andrea E Bialocerkowski PhD BApp Sc (Physio) MApp Sc (Physio)
This study reports on a novel methodology using the V-scope to quantify elbow and shoulder movement in young children with obstetric brachial plexus palsy (OBPP), and the intra-and interreliability of this method. The V-scope, a portable, inexpensive movement analysis system, was configured in an L-shape, with two transmitting towers placed on the floor and one 1.35m off the ground. These towers received ultrasonic pulses from buttons that were placed over standardized landmarks of the child's trunk, chest, and upper limb. Two physiotherapists (a paediatric and a generalist) facilitated the maximum range of active elbow flexion/extension and shoulder abduction/flexion in 30 children with OBPP (18 females, 12 males; age range 6mo-4y 7mo; mean age 2y 6mo [SD 1y 2mo]). Assessments were conducted on two occasions, one week apart. The V-scope was found to be feasible to use by a specialist and a generalist physiotherapist, demonstrating moderate to high reliability coefficients, small measurement errors, and lack of missing data. The pediatric physiotherapist was more reliable in measuring elbow and shoulder movement compared with the generalist physiotherapist, which suggests that the same experienced, pediatric physiotherapist should assess elbow and shoulder movement across all occasions of testing. [source]


Does limb angular motion raise limb arterial pressure?

ACTA PHYSIOLOGICA, Issue 3 2009
D. D. Sheriff
Abstract Aim:, Mechanical factors such as the muscle pump have been proposed to augment flow by several mechanisms. The potential for limb angular motion to augment local perfusion pressure (pressure = ½,r2,2, where , is the fluid density, r the radius and , the angular velocity) has been overlooked. We sought to test the hypothesis that limb angular motion augments limb arterial pressure. Methods:, Nine human subjects performed horizontal shoulder flexion (,±90° at 0.75 Hz for 30 s). We measured finger arterial pressure (photoplethysmography) in the moving (Trial 1) and non-moving arm (Trial 2) in separate trials along with the pressure (strain gauge) generated at the fingers within a length of water-filled tubing mounted on the moving arm in both trials. Results:, Arm swinging raised (P < 0.05) the mean pressure measured in the tubing by 11 ± 2 and 14 ± 2 mmHg (Trials 1 and 2 respectively). In response to exercise, the rise in mean finger arterial pressure in the swinging limb (18 ± 3 mmHg, Trial 1) exceeded (P < 0.05) the rise in the resting limb (8 ± 2 mmHg, Trial 2) by an amount similar to the 11 mmHg rise in pressure generated in the tubing in Trial 1. Conclusions:, We conclude that the swinging of a limb creates centrifugal force (a biomechanical centrifuge) which imparts additional pressure to the arteries, but not the veins owing to the venous valves, which further widens the arterial,venous pressure difference. [source]


Measurement of physical work capacity during arm and shoulder lifting at various shoulder flexion and ad/abduction angles

HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, Issue 2 2003
Jung-Yong Kim
The purpose of this study was to provide information on physical work capacity during arm and shoulder lifting at various shoulder flexion and ad/abduction angles. We measured the maximum voluntary contractions (MVCs) in 20 male participants during controlled one-arm lifting. The lifting involved upward motion of the scapula at various shoulder angles. Simultaneously, the electromyographic (EMG) activity of 3 shoulder muscles and psychophysical workload were also recorded. The various measurements were compared to provide a multidimensional assessment of the physical work capacity of the shoulder at various working angles. In particular, 90 and 120 degrees of flexion, 30 degrees of adduction, and 90 degrees of abduction were found to be the most vulnerable angles based on the measured MVCs. The average root mean square value of the EMG increased most significantly at 90 to 150 degrees of flexion and at 30 and 60 degrees of abduction. Slightly different measurements were compared to validate the results. In addition, a 3-D static biomechanical model was used to show whether the estimated shoulder workload matched the measured physical capacity of the shoulder. In conclusion, these results may help ergonomists to identify shoulder angles associated with a relatively high risk of injury, and to match the workload with the physical capacity of the shoulder. Task-specific information on shoulder work capacity is needed in the manufacturing and shipbuilding industries to protect workers from acute injuries and cumulative trauma disorders of the shoulder. Experimental results provide various data on shoulder work capacity during realistic multijoint arm and shoulder lifting, and should help lead to improvements in workplace ergonomic design. © 2003 Wiley Periodicals, Inc. Hum Factors Man 13: 153,163, 2003. [source]


Shoulder Disability After Different Selective Neck Dissections (Levels II,IV Versus Levels II,V): A Comparative Study

THE LARYNGOSCOPE, Issue 2 2005
Johnny Cappiello MD
Abstract Objectives/Hypothesis: The objective was to compare the results of clinical and electrophysiological investigations of shoulder function in patients affected by head and neck carcinoma treated with concomitant surgery on the primary and the neck with different selective neck dissections. Study Design: Retrospective study of 40 patients managed at the Department of Otolaryngology, University of Brescia (Brescia, Italy) between January 1999 and December 2001. Methods: Two groups of 20 patients each matched for gender and age were selected according to the type of neck dissection received: patients in group A had selective neck dissection involving clearance of levels II,IV, and patients in group B had clearance of levels II,V. The inclusion criteria were as follows: no preoperative signs of myopathy or neuropathy, no postoperative radiotherapy, and absence of locoregional recurrence. At least 1 year after surgery, patients underwent evaluation of shoulder function by means of a questionnaire, clinical inspection, strength and motion tests, electromyography of the upper trapezius and sternocleidomastoid muscles, and electroneurography of the spinal accessory nerve. Statistical comparisons of the clinical data were obtained using the contingency tables with Fisher's Exact test. Electrophysiological data were analyzed by means of Fisher's Exact test, and electromyography results by Kruskal-Wallis test. Results: A slight strength impairment of the upper limb, slight motor deficit of the shoulder, and shoulder pain were observed in 0%, 5%, and 15% of patients in group A and in 20%, 15%, and 15% of patients in group B, respectively. On inspection, in group B, shoulder droop, shoulder protraction, and scapular flaring were present in 30%, 15%, and 5% of patients, respectively. One patient (5%) in group A showed shoulder droop as the only significant finding. In group B, muscle strength and arm movement impairment were found in 25% of patients, 25% showed limited shoulder flexion, and 50% had abnormalities of shoulder abduction with contralateral head rotation. In contrast, only one patient (5%) in group A presented slight arm abduction impairment. Electromyographic abnormalities were less frequently found in group A than in group B (40% vs. 85% [P = .003]), and the distribution of abnormalities recorded in the upper trapezius muscle and sternocleidomastoid muscle was quite different: 20% and 40% in group A versus 85% and 45% in group B, respectively. Only one case of total upper trapezius muscle denervation was observed in group B. In both groups, electroneurographic data from the side of the neck treated showed a statistically significant increase in latency (P = .001) and decrease in amplitude (P = .008) compared with the contralateral side. There was no significant difference in electroneurographic data from the side with and the side without dissection in either group. Even though a high number of abnormalities was found on electrophysiological testing, only a limited number of patients, mostly in group B, displayed shoulder function disability affecting daily activities. Conclusion: The study data confirm that clearance of the posterior triangle of the neck increases shoulder morbidity. However, subclinical nerve impairment can be observed even after selective neck dissection (levels II,IV) if the submuscular recess is routinely dissected. [source]