Home About us Contact | |||
Shape Patterns (shape + pattern)
Selected AbstractsThe burgeoning field of statistical phylogeographyJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2004L. L. Knowles Abstract In the newly emerging field of statistical phylogeography, consideration of the stochastic nature of genetic processes and explicit reference to theoretical expectations under various models has dramatically transformed how historical processes are studied. Rather than being restricted to ad hoc explanations for observed patterns of genetic variation, assessments about the underlying evolutionary processes are now based on statistical tests of various hypotheses, as well as estimates of the parameters specified by the models. A wide range of demographical and biogeographical processes can be accommodated by these new analytical approaches, providing biologically more realistic models. Because of these advances, statistical phylogeography can provide unprecedented insights about a species' history, including decisive information about the factors that shape patterns of genetic variation, species distributions, and speciation. However, to improve our understanding of such processes, a critical examination and appreciation of the inherent difficulties of historical inference and challenges specific to testing phylogeographical hypotheses are essential. As the field of statistical phylogeography continues to take shape many difficulties have been resolved. Nonetheless, careful attention to the complexities of testing historical hypotheses and further theoretical developments are essential to improving the accuracy of our conclusions about a species' history. [source] Correlates of body mass evolution in primatesAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2006Christophe Soligo Abstract Body mass is undoubtedly central to the overall adaptive profile of any organism. Despite this, very little is known of what forces drive evolutionary changes in body mass and, consequently, shape patterns of body mass distribution exhibited by animal radiations. The search for factors that may influence evolutionary processes in general frequently focuses on environmental parameters such as climate change or interspecific competition. With respect to body mass, there is also the suggestion that evolutionary lineages may follow an inherent trend toward increased body mass, known as Cope's rule. The present paper investigates whether overall directional trends of body mass change, or correlations between patterns of body mass evolution and environmental factors have influenced the evolution of body mass in plesiadapiforms and primates. Analyses of the global fossil record of plesiadapiforms and primates suggest that the former did indeed follow an overall trend toward increased body mass compatible with the predictions of Cope's rule. In contrast, neither primates as a whole, nor a number of individual primate radiations (Adapiformes, Omomyiformes, and Anthropoidea), show any indication of overall directional patterns of body mass change. No correlations of primate body mass change with either the latitudinal distribution of fossil species, or with estimates of global temperature trends, were found. There is evidence, however, that direct competition between omomyiforms and adapiforms (the two main primate radiations known from the Paleogene) influenced processes of body mass evolution in omomyiforms. Am J Phys Anthropol, 2006. © 2006 Wiley-Liss, Inc. [source] Patterns of cryptic hybridization revealed using an integrative approach: a case study on genets (Carnivora, Viverridae, Genetta spp.) from the southern African subregionBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2005PHILIPPE GAUBERT Recent years have seen the development of molecular-based methodologies to investigate hybridization and its impact on the evolutionary process. However, morphological characterization of hybrid zones has only scantily been considered, especially in zootaxa. Thus, the level of congruence between molecular and morphological characters when attempting to detect hybrids remains a poorly tackled area. The genets (genus Genetta) provide an ideal case study for further investigation of the respective contribution of morphology and DNA in hybrid zone characterization because (1) their morphology has recently been exhaustively explored and (2) the existence of hybrid zones in southern Africa was proposed in the literature. We assessed levels of hybridization among the southern African genets, and questioned the role of ecological factors on the hybridization patterns detected. We used an integrative approach involving nine discrete morphological characters and a diagnostic discriminant function, geometric morphometrics and sequences of cytochrome b including collection specimens. The combination of independent materials allowed us to accurately reassess the level of hybridization in southern African genets, and revealed cryptic, interspecific gene flows. Morphology unambiguously detected a low number of G. maculata × G. tigrina hybrids and rejected the hypothesis of a large intergradation zone in KwaZulu-Natal, thus supporting the species status of the two genets. Cytochrome b analyses revealed: (1) cryptic, massive hybridization between G. tigrina and the sympatric G. felina, and (2) a trace of reticulation (one sequence) between G. tigrina and the allopatric G. genetta. The type specimen of G. mossambica Matschie, 1902 is considered to be a morphological hybrid between G. maculata and G. angolensis. Remarkably, the morphological approaches (discrete characters and morphometrics) proved complementary to conclusions derived from cytochrome b sequences. Whilst morphometrics was generally unable to accurately identify all putative hybrids, this approach revealed diagnostic cranial shape differences between recognized species as well as the cryptic G. ,letabae' (included in the super-species G. maculata). Morphometrics also confirmed the diagnostic value and age dependency of discrete characters. Our integrative approach appeared necessary to the detection of cryptic hybridizations and to the comprehensive characterization of hybrid zones. The recurrent detection of hybrids exhibiting tigrina -like coat patterns may suggest (1) asymmetric hybridization of G. tigrina males to females of other species and (2) positive selection for tigrina -like phenotype in South African habitats, but these hypotheses will have to be further tested using other sources of evidence. Despite the precise mosaic of hybrid zones identified in southern African genets, the environmental factors that shape patterns of distribution of hybrids remain unclear. Nevertheless, in the light of our range reassessment, it appears that seasonality of precipitation and periods of annual frost may play stringent roles in the distribution of genets. The complementarity of our results based on morphology and molecules is regarded as encouraging for the further development of integrative approaches in order to better understand the complex phenomena that underlie hybridization processes. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86, 11,33. [source] Multivariate analysis of leaf shape patterns in Asian species of the Uvaria group (Annonaceae)BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2003CONOR MEADE Multivariate analysis of leaf radian measurements was used to investigate variation in leaf shape among 34 Asian species of the Uvaria group, a large palaeotropical group of climbing Annonaceae characterized by imbricate petals and stellate hairs. Raw data were normalized by conversion into 15 ratio characters and using the log10 transformation. All species surveyed showed a unique leaf-shape ,bauplan'. The ratio character with the greatest discriminating power in both the Principal Components Analysis and Discriminant Analysis (DA) results was a measure of the shape of the leaf base. Ratio characters with the highest factor loadings for principal components 1 and 2 clearly separated the sampled taxa when plotted against one another and provided support for the retention of several taxa as distinct species or varieties. Classification of cases into taxa using DA yielded a correct classification rate of only 52% for the ratio-transformed data; however, division of taxa in the dataset into smaller subgroups defined by discrete morphological characters significantly increased the accuracy of case identification to between 67 and 100% of cases correctly classified, depending on the group. Case identification using DA on log10 -transformed data was higher than for the ratio values in the entire dataset (61.7%) and the larger subgroups. However, the rate of correct case assignment was lower in the smaller groups than for the ratio data. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 143, 231,242. [source] Introgressive hybridization in southern African baboons shapes patterns of mtDNA variationAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010C. Keller Abstract Species, as main evolutionary units have long been considered to be morphological entities with limited hybridization potential. The occurrence of taxa which maintain morphological distinctness despite extensive hybridization is an interesting phenomenon. To understand the evolution of these taxa, descriptions of contemporary morphological and genetic variation are essential, also to reconstruct sound phylogenies. Baboons, with their wide geographic range, variant morphotypes, and extensive hybridization offer an intriguing model for those studies. We focus on the complex situation in southern Africa that, in contrast to east Africa, has been neglected in terms of baboon hybridization history. We aim to clarify the distribution and identify possible overlapping zones between different, previously described mitochondrial (mt) DNA clades of baboons that do not match with the ranges of traditionally recognized species. On the basis of the widespread sampling and mitochondrial cytochrome b gene sequencing, we constructed a phylogenetic tree that separates representatives of the two southern African baboon species, yellow and chacma baboons, into six clades: southern, northern and eastern chacmas, Kinda baboons and southern and Luangwa yellow baboons. The ranges of the chacma clades come into close contact or overlap in two regions in the Republic of South Africa and Namibia. Our phylogenetic reconstruction reveals mitochondrial paraphyly for chacma and yellow baboons, which is probably caused by introgressive hybridization and subsequent nuclear swamping, whereby males of the chacma morphotype population from the south invaded the yellow morphotype population in the north bringing their morphotype into a population that maintained its yellow baboon mtDNA. Am J Phys Anthropol 2010. © 2009 Wiley-Liss, Inc. [source] |