Shape Determination (shape + determination)

Distribution by Scientific Domains


Selected Abstracts


Dynamics of bacterial cytoskeletal elements

CYTOSKELETON, Issue 11 2009
Peter L. Graumann
Abstract Bacterial cytoskeletal elements are involved in an astonishing spectrum of cellular functions, from cell shape determination to cell division, plasmid segregation, the positioning of membrane-associated proteins and membrane structures, and other aspects of bacterial physiology. Interestingly, these functions are not necessarily conserved, neither between different bacterial species nor between bacteria and eukaryotic cells. The flexibility of cytoskeletal elements in performing different tasks is amazing and emphasises their very early development during evolution. This review focuses on the dynamics of cytoskeletal elements from bacteria. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Runx3 is involved in hair shape determination

DEVELOPMENTAL DYNAMICS, Issue 4 2005
Eli Raveh
Abstract Transcriptional regulators of the Runx family play critical roles in normal organ development and, when mutated, lead to genetic diseases and cancer. Runx3 functions during cell lineage decisions in thymopoiesis and neurogenesis and mediates transforming growth factor-, signaling in dendritic cells. Here, we study the function of Runx3 in the skin and its appendages, primarily the hair follicle, during mouse development. Runx3 is expressed predominantly in the dermal compartment of the hair follicles as they form and during the hair cycle, as well as in the nail and sweat gland skin appendages. Distinct expression is also detected periodically in isolated cells of the epidermis and in melanocytes, populating the hair bulb. Runx3 -deficient mice display a perturbation of the normal hair coat, which we show to be due to hair type and hair shape changes. Thus, one of the functions of Runx3 in skin may be to regulate the formation of the epithelial derived structural hair by affecting dermal to epidermal interactions. Developmental Dynamics 233:1478,1487, 2005. © 2005 Wiley-Liss, Inc. [source]


Swarmer cell differentiation in Proteus mirabilis

ENVIRONMENTAL MICROBIOLOGY, Issue 8 2005
Philip N. Rather
Summary Under the appropriate environmental conditions, the Gram-negative bacterium Proteus mirabilis undergoes a remarkable differentiation to form a distinct cell type called a swarmer cell. The swarmer cell is characterized by a 20- to 40-fold increase in both cell length and the number of flagella per cell. Environmental conditions required for swarmer cell differentiation include: surface contact, inhibition of flagellar rotation, a sufficient cell density and cell-to-cell signalling. The differentiated swarmer cell is then able to carry out a highly ordered population migration termed swarming. Genetic analysis of the swarming process has revealed that a large variety of distinct loci are required for this differentiation including: genes involved in regulation, lipopolysaccharide and peptidoglycan synthesis, cell division, ATP production, putrescine biosynthesis, proteolysis and cell shape determination. The process of swarming is important medically because the expression of virulence genes and the ability to invade cells are coupled to the differentiated swarmer cell. In this review, the genetic and environmental requirements for swarmer cell differentiation will be outlined. In addition, the role, of, the, differentiated, swarmer, cell, in, virulence and its possible role in biofilm formation will be discussed. [source]


Advanced solution scattering data analysis methods and their applications

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-1 2000
D. I. Svergun
A method for ab initio low-resolution shape and internal structure retrieval from contrast variation solution scattering data is described. The method uses a multiphase model of a particle build from densely packed dummy atoms and employs simulated annealing to find a compact interconnected configuration of phases that fits the available experimental data. In the particular case of a single phase particle (shape determination) the method is compared to another ab initio method using low resolution envelope functions. Examples of the shape determination of several proteins from experimental X-ray scattering data are presented. [source]