Home About us Contact | |||
Shannon Diversity (shannon + diversity)
Terms modified by Shannon Diversity Selected AbstractsDifferent portions of the maize root system host Burkholderia cepacia populations with different degrees of genetic polymorphismENVIRONMENTAL MICROBIOLOGY, Issue 1 2000Luigi Chiarini In order to acquire a better understanding of the spatial and temporal variations of genetic diversity of Burkholderia cepacia populations in the rhizosphere of Zea mays, 161 strains were isolated from three portions of the maize root system at different soil depths and at three distinct plant growth stages. The genetic diversity among B. cepacia isolates was analysed by means of the random amplified polymorphic DNA (RAPD) technique. A number of diversity indices (richness, Shannon diversity, evenness and mean genetic distance) were calculated for each bacterial population isolated from the different root system portions. Moreover, the analysis of molecular variance ( amova) method was applied to estimate the genetic differences among the various bacterial populations. Our results showed that, in young plants, B. cepacia colonized preferentially the upper part of the root system, whereas in mature plants, B. cepacia was mostly recovered from the terminal part of the root system. This uneven distribution of B. cepacia cells among different root system portions partially reflected marked genetic differences among the B. cepacia populations isolated along maize roots on three distinct sampling occasions. In fact, all the diversity indices calculated indicated that genetic diversity increased during plant development and that the highest diversity values were found in mature maize plants, in particular in the middle and terminal portions of the root system. Moreover, the analysis of RAPD patterns by means of the amova method revealed highly significant divergences in the degree of genetic polymorphism among the various B. cepacia populations. [source] Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversityFRESHWATER BIOLOGY, Issue 6 2010THAÍSA SALA MICHELAN Summary 1.,The issue of freshwater species being threatened by invasion has become central in conservation biology because inland waters exhibit the highest species richness per unit area, but apparently have the highest extinctions rates on the planet. 2.,In this article, we evaluated the effects of an exotic, invasive aquatic grass (Urochloa subquadripara, tropical signalgrass) on the diversity and assemblage composition of native macrophytes in four Neotropical water bodies (two reservoirs and two lakes). Species cover was assessed in quadrats, and plant biomass was measured in further quadrats, located in sites where tropical signalgrass dominated (D quadrats) and sites where it was not dominant or entirely absent (ND quadrats). The effects of tropical signalgrass on macrophyte species richness, Shannon diversity and number of macrophyte life forms (a surrogate of functional richness) were assessed through regressions, and composition was assessed with a DCA. The effects of tropical signalgrass biomass on the likelihood of occurrence of specific macrophyte life forms were assessed through logistic regression. 3.,Tropical signalgrass had a negative effect on macrophyte richness and Shannon and functional diversity, and also influenced assemblage composition. Emergent, rooted with floating stems and rooted submersed species were negatively affected by tropical signalgrass, while the occurrence of free-floating species was positively affected. 4.,Our results suggest that competition with emergent species and reduction of underwater radiation, which reduces the number of submersed species, counteract facilitation of free-floating species, contributing to a decrease in plant diversity. In addition, homogenisation of plant assemblages shows that tropical signalgrass reduces the beta diversity in the macrophyte community. 5.,Although our results were obtained at fine spatial scales, they are cause for concern because macrophytes are an important part of freshwater diversity. [source] Similar breakdown rates and benthic macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in Californian streamsFRESHWATER BIOLOGY, Issue 4 2010IGOR LA Summary 1.,Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2.,We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E-site) and a second bordered by native vegetation (N-site). 3.,The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc-bags) and one with mixed native tree litter (Nat-bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4.,Litter input (average dry mass: 950 g m,2 year,1 in E-sites versus 669 g m,2 year,1 in N-sites) was similar, although in-stream litter composition differed between E- and N-sites. Litter broke down at similar rates in Euc-bags and Nat-bags (0.0193 day,1 versus 0.0134 day,1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5.,Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc-bags and Nat-bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6.,The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ,season' or ,stream'. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region. [source] Effects of Submerged Aquatic Vegetation on Macrozoobenthos in a Coastal Lagoon of the Southwestern AtlanticINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2007Rafael Arocena Abstract The freshwater-dominated part of Rocha coastal lagoon recently experienced sudden colonization by submerged aquatic vegetation (SAV). Macrophytes may be beneficial or detrimental for the zoobenthos, and both assemblages may in turn affect the food availability for birds and fishes. With the aim of evaluating the effect of SAV on water conditions and on the composition, abundance and diversity of macrozoobenthos, vegetated areas (V, up to 500 g DW m,2) were compared with vegetation-free areas (N). The benthic abundance was higher in V (up to 5000 ind m,2) than in N (up to 2200 ind m,2). Species richness and abundance of amphipods, gastropods and chironomids were also higher at V compared with N. Conversely, the abundance of Tanais stanfordi (Crustacea), Erodona mactroides (Bivalvia) and Laeonereis culveri (Polychaeta), and the Shannon diversity were higher at N. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Grasshopper Herbivory Affects Native Plant Diversity and Abundance in a Grassland Dominated by the Exotic Grass Agropyron cristatumRESTORATION ECOLOGY, Issue 1 2009David H. Branson Abstract The indirect effects of native generalist insect herbivores on interactions between exotic and native grassland plants have received limited attention. Crested wheatgrass (Agropyron cristatum) is the most common exotic rangeland grass in western North America. Crested wheatgrass communities are resistant to colonization by native plant species and have strong competitive effects on native species, imposing problems for the restoration of native grasslands. Grasshoppers are generalist herbivores that are often abundant in Crested wheatgrass,dominated sites in the northern Great Plains. We conducted two experiments in a Crested wheatgrass,dominated grassland in western North Dakota to test the hypothesis that grasshopper herbivory influences local Crested wheatgrass community composition by impeding native seedlings. Grasshopper herbivory negatively affected the species richness, abundance, and Shannon diversity of native plants in 3 of 4 years. Although additional research is needed to determine if grasshoppers actively select native plants, the effects of grasshopper herbivory may be an important consideration in the restoration of Crested wheatgrass areas. Our findings illustrate the importance of understanding the impact of native generalist invertebrate herbivores on the relationships between exotic and native plants. [source] Forest bird diversity and ski-runs: a case of negative edge effectANIMAL CONSERVATION, Issue 1 2005Paola Laiolo Among tourist activities in the Alps, winter sports have a prominent role because of the large scale of changes they cause at the habitat and landscape level. We have analysed whether ski resorts lead to significant threats to the avian diversity in the coniferous forests of the western Italian Alps, by comparing the bird communities of plots located in (1) the forest interior, (2) forest at the edge of ski-runs and (3) forest at the edge of pastures (the latter two are anthropogenic elements of forest fragmentation). Ski-runs produce a negative edge effect in the study forests: plots at their edges present lower bird species richness and Shannon diversity than those located in the forest interior or at the edges of pastures. In particular, birds typical of ecotone habitats seem to favour forest plots set at the edge of pastures. Ski-run-edges are linear landscape features that create high contrast edges; conversely, vegetation structure is more complex at the edge of pastures, attracting a rich and diverse avifauna. In the study area, pastures tend to be abandoned whereas winter sport resorts are increasing in extent. Accordingly, there is a need for coordinated management and cooperation between sport- and land-management agencies, in order to preserve native biodiversity while simultaneously managing land for sport activities. [source] Changes in heathland vegetation under goat grazing: effects of breed and stocking rateAPPLIED VEGETATION SCIENCE, Issue 1 2010Rafael Celaya Abstract Questions: How are heathland vegetation dynamics affected by different goat grazing management? Location: Cantabrian heathlands in Illano, Asturias, northern Spain. Methods: During 4 years, vegetation dynamics (structural composition, canopy height and floristic diversity) were studied under three goat grazing treatments with three replicates: high stocking rate (11.7 goats ha,1) with a local Celtiberic breed, and high (15 goats ha,1) and low (6.7 goats ha,1) stocking rates with a commercial Cashmere breed. Results: The relative cover of woody plants, particularly heather species, decreased more while herbaceous cover increased more under local Celtiberic than under Cashmere breed grazing. Within Cashmere treatments, the cover and height of live shrubs decreased more and the herbaceous cover increased more under high than under low stocking rate. Redundancy analysis showed a significant effect of treatment × year interaction on floristic composition. Greater species richness was recorded under local goat grazing, but Shannon diversity index fell in the fourth year on these plots because of dominance by two grass species. Conclusions: Local Celtiberic goat grazing at such a high stocking rate (11.7 goats ha,1) hinders the development of sustainable systems on these heathlands, both in environmental and productive terms, owing to the limitations in soil fertility. Nevertheless, Celtiberic goats could be useful for controlling excessive shrub encroachment and reducing fire hazard. Cashmere goat grazing at high stocking rate promoted the highest Shannon diversity by generating a better balance between woody and herbaceous plants, while shrub dominance was not altered under the low stocking rate. [source] Long-term plant community changes in managed fens in Ohio, USAAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2008Matthew J. Barry Abstract 1.Long-term studies are necessary to describe effects of restoration efforts on plant communities and invasive species in North American fen communities. In 1986, 1999 and 2000, wetland plant communities and abiotic factors were sampled in two fens in Ohio that were actively managed as a state nature preserve since 1986. The correlation between plant species and environmental conditions was examined in 1986 to 2000, and changes in woody plant cover were measured on aerial photographs from 1938 to 1997 to analyse long-term effects of management practices. 2.142 vascular plant species and 32 bryophyte taxa were found in these rich fens, including 13 rare (i.e. state-listed as endangered, threatened or potentially threatened) and 14 alien species. TWINSPAN analyses identified nine plant community types, and species distributions were correlated with several abiotic factors (groundwater depth, pH, soil organic content, distance from wetland edge and depth of peat). Communities along the wetland edge in deep peat had higher richness, more woody species, more alien species and fewer rare species than communities in areas near sources of flowing groundwater with more marl and less peat. 3.There was little change in species richness, evenness, and Shannon's diversity from 1986 to 2000. However, plant species assemblages changed during the study, and changes were different in unmanipulated transects compared with those where habitat managers removed invasive woody plants. An aerial photograph analysis indicated that woody plant cover increased by about 1% each year during 1938 to 1997 despite current management efforts to remove invasive trees and shrubs. Additional strategies should be directed toward reducing shrub encroachment and invasive species while promoting rare species. Copyright © 2007 John Wiley & Sons, Ltd. [source] |