Home About us Contact | |||
Shallow Roots (shallow + root)
Selected AbstractsCarbon dioxide uptake, water relations and drought survival for Dudleya saxosa, the ,rock live-forever', growing in small soil volumesFUNCTIONAL ECOLOGY, Issue 4 2007P. S. NOBEL Summary 1Although many plants grow in rock crevices and other regions of small soil volume, including over 20 000 epiphytic and hemi-epiphytic species, analyses of the actual soil volume occupied, the water availability in that soil, the water-storage capacity in the shoots and underground organs, and the photosynthetic pathway utilized have rarely been combined. 2Dudleya saxosa (M.F. Jones) Britton and Rose (Crassulaceae), growing in the Sonoran Desert, has very shallow roots that occupied soil volumes averaging only 43 × 10,6 m3 per medium-sized plant. This volume of soil can hold about the same amount of water (10 g) as can be stored in the leaves, corm and roots combined (11 g), but at a sufficiently high water potential for transfer to the plant for less than 1 week after a substantial rainfall. 3About 80% of the net carbon dioxide uptake by D. saxosa over a 24-h period occurred during the daytime (C3) under wet conditions, the daily total decreasing by 34% and the pattern shifting to nocturnal net CO2 uptake (CAM) after 46 days' drought. Seventy-seven days' drought eliminated its daily net CO2 uptake. 4Stomatal frequency was only 67 mm,2 on the adaxial (upper) surface and twofold lower on the abaxial surface. The cuticle was thick, 34 µm for the adaxial surface. Leaves had 24 mesophyll cell layers, leading to a high mesophyll cell surface area per unit leaf area of 142. 5The three leaf anatomical features plus utilization of CAM increased net CO2 uptake per unit of water transpired, and helped D. saxosa thrive in a small soil volume, with the underground corm being a major supplier of water to the succulent leaves during 2.5 months of drought. The maximum water-holding capacity of the soil explored by the roots closely matched the maximum water-holding capacity of the plant, reflecting the conservative strategy used by D. saxosa in a stressful semi-arid environment. [source] Rooting depth and soil moisture control Mediterranean woody seedling survival during droughtFUNCTIONAL ECOLOGY, Issue 3 2007F. M. PADILLA Summary 1Seedling survival is one of the most critical stages in a plant's life history, and is often reduced by drought and soil desiccation. It has been hypothesized that root systems accessing moist soil layers are critical for establishment, but very little is known about seedling root growth and traits in the field. 2We related seedling mortality to the presence of deep roots in a field experiment in which we monitored soil moisture, root growth and seedling survival in five Mediterranean woody species from the beginning of the growing season until the end of the drought season. 3We found strong positive relationships between survival and maximum rooting depth, as well as between survival and soil moisture. Species with roots in moist soil layers withstood prolonged drought better, whereas species with shallow roots died more frequently. In contrast, biomass allocation to roots was not related to establishment success. 4Access to moist soil horizons accounted for species-specific survival rates, whereas large root : shoot (R:S) ratios did not. The existence of soil moisture thresholds that control establishment provides insights into plant population dynamics in dry environments. [source] Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite)FUNCTIONAL ECOLOGY, Issue 3 2003K. A. Snyder Summary 1Prosopis velutina Woot. (Velvet Mesquite) at a site with limited groundwater availability derived a greater percentage of water from shallow soil at the onset of the summer rainy season than did trees at a site with greater availability of groundwater. Predawn leaf water potentials (,pd) were not a strong indicator of shallow water use for this species with roots in multiple soil layers. 2We experimentally defoliated P. velutina plants to determine if reduced-canopy photosynthesis would alter vertical patterns of root activity. After natural rain events, hydrogen isotope ratios of xylem sap indicated that defoliated P. velutina took up a greater percentage of its water from shallow soils than did undefoliated plants. 3Irrigation with deuterium-labelled water further demonstrated that undefoliated plants were able to use shallow soil water. Defoliation appeared to affect the ability of trees to use deep-water sources. 4Reduced carbon assimilation limited water uptake from deep soil layers. These data highlight that there are internal physiological controls on carbon allocation that may limit water uptake from different soil layers. During periods of high vapour pressure deficit or soil drought, when leaf gas exchange and carbon assimilation decline, this may create positive feedbacks where plants are unable to forage for deep water due to carbon limitations. [source] Desert shrub water relations with respect to soil characteristics and plant functional typeFUNCTIONAL ECOLOGY, Issue 3 2002J. S. Sperry Summary 1.,Soil characteristics influence plant communities in part through water relations. Hypothetically, finer textured soils in arid climates should be associated with more negative plant and soil water potentials during drought, greater resistance of xylem to cavitation, and shallower root systems than coarse soils. 2.,These hypotheses were tested by comparing the water relations of Great Basin shrubs growing in sand versus loam soils. The eight study species (Chrysothamnus nauseosus, Chrysothamnus viscidiflorus, Chrysothamnus parryi, Tetradymia glabrata, Atriplex canescens, Atriplex confertifolia, Grayia spinosa and Sarcobatus vermiculatus) varied in typical rooting depth and vegetative phenology. 3.,Xylem pressures for a species were, on average, 1·1 MPa more negative in the loam versus the sand site, despite greater precipitation at the loam site. Root xylem at the loam site was, on average, 0·9 MPa more resistant to cavitation than at the sand site for the same species. There was a strong trend for shallower rooting depths at the loam versus the sand site. Within a species, roots were consistently more vulnerable to cavitation than stems, and experienced more cavitation during the growing season. 4.,Over most of the summer there was much more cavitation at the loam site than at the sand site. More than 80% loss of xylem conductivity (PLC) was estimated in shallow roots of three species at the loam site by the end of July, with two of the three showing extensive leaf drop and branch mortality. Transpiration rate was negatively correlated with PLC, with a tendency for lower gas-exchange rates in loam versus sand. 5.,At the sand site, cavitation resistance was negatively correlated with estimated rooting depth. Drought-deciduous species had the shallowest root systems and greatest resistance to cavitation. In contrast, two species with phreatophytic tendencies were summer-active and were the most vulnerable to cavitation. 6.,The cavitation resistance of roots determines the minimum water potential permitting hydraulic contact with soil. Differences in cavitation resistance of roots between desert species may contribute to differences in sensitivity of gas exchange to soil drought, ability to perform hydraulic lift, and response to late summer rain pulses. [source] Seasonal water relations of Lyginia barbata (Southern rush) in relation to root xylem development and summer dormancy of root apicesNEW PHYTOLOGIST, Issue 4 2010Michael W. Shane Summary ,Periods of dormancy in shallow roots allow perennial monocotyledons to establish deep root systems, but we know little about patterns of xylem maturation, water-transport capacities and associated economies in water use of growing and dormant roots. ,Xylem development, anatomy, conductance and in situ cellular [K] and [Cl] were investigated in roots of field-grown Lyginia barbata (Restionaceae) in Mediterranean southwestern Australia. Parallel studies of gas exchange, culm relative water loss and soil water content were conducted. ,Stomatal conductance and photosynthesis decreased during summer drought as soil profiles dried, but rates recovered when dormant roots became active with the onset of wetter conditions. Anatomical studies identified sites of close juxtaposition of phloem and xylem in dormant and growing roots. Ion data and dye tracing showed mature late metaxylem of growing roots was located , 100 mm from the tip, but at only , 10 mm for dormant roots. Dormant roots remained hydrated in dry soils (0.001,0.005 g g,1). ,Effective regulation of growth and water-conserving/obtaining properties permits the survival of shallow roots of L. barbata during summer drought and may represent important strategies for establishing deeper perennial root systems in other monocotyledonous plants adapted to seasonally dry habitats. [source] |