Shallow Depths (shallow + depth)

Distribution by Scientific Domains


Selected Abstracts


Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic model

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2006
Francesca Zencher
SUMMARY A model is presented for pore pressure migration through a transition layer separating a meteoric aquifer at hydrostatic pressure from a deeper reservoir at lithostatic pressure. This configuration is thought to be pertinent to the South Iceland seismic zone (SISZ) and to other tectonically active regions of recent volcanism, where volatiles are continuously released by ascending magma below the brittle,ductile transition. Poroelastic parameters are computed for basaltic rock. The model is 1-D, the fluid viscosity is temperature dependent and rock permeability is assumed to be pressure dependent according to a dislocation model of a fractured medium. Environment conditions are considered, pertinent to basalt saturated with water at shallow depth (case I) and at mid-crustal depth (case II). If the intrinsic permeability of the rock is high, no significant effects are observed in the pressure field but advective heat transfer shifts the brittle,ductile transition to shallower depths. If the intrinsic permeability is low, the pressure-dependent permeability can propagate near-lithostatic pore pressures throughout most of the transition layer, while the temperature is practically unaffected by advective contributions so that the rock in the transition layer remains in brittle condition. Geometrical parameters characterizing the fracture distribution are important in determining the effective permeability: in particular, if an interconnected system of fractures develops within the transition layer, the effective permeability may increase by several orders of magnitude and near-lithostatic pore pressure propagates upwards. These modelling results have important bearings on our understanding of seismogenic processes in geothermal areas and are consistent with several geophysical observations in the SISZ, in connection with the two 2000 June M= 6.5 earthquakes, including: (i) fluid pressure pulses in deep wells, (ii) low resistivity at the base of the seismogenic layer, (iii) low VP/VS ratio and time-dependent seismic tomography, (iv) heterogeneity of focal mechanisms, (v) shear wave splitting, (vi) high b -value of deep foreshocks, (vii) triggered seismicity and (viii) Radon anomalies. [source]


Seismological identification of the 1998 May 28 Pakistan nuclear test

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2002
D. Bowers
Summary On 1998 May 28 Pakistan announced that it had conducted an underground nuclear test. Here we assess whether seismological data, recorded by the International Monitoring System (IMS) being set up to help verify the Comprehensive Test Ban Treaty (CTBT), can be used to identify the Pakistani test as a possible underground explosion. The prototype International Data Centre (pIDC) automatically determined the network-averaged body wave and surface wave magnitudes to be 4.9 and 3.6, respectively. One of the most reliable methods of identifying possible underground explosions is the mb : Ms criterion. However, mb : Ms is calibrated using conventional magnitudes from historical earthquakes and explosions. We calculate , in the conventional way, using P waves from the Pakistani test recorded by a simulated standard short-period seismograph and read by an experienced analyst. We also analyse the three components of the surface waves from the Pakistani test to confirm that these are correctly associated, and calculate . On mb : Ms the Pakistani test falls between the historical Eurasian underground explosion and earthquake populations. Thus, while the source may arouse suspicion on mb : Ms, its signature is typical of both explosions and deep-lithospheric Eurasian earthquakes. The vast majority of the seismic P signals from the Pakistani test, recorded at long range, are complex. However, simple P seismograms are recorded by at least three of the IMS stations. Analysis, using the relative amplitude method, of three of the simple P seismograms suggests that the source is shallow (less than 5 km). We conclude that the combination of the mb : Ms signature and shallow depth are sufficient to classify the Pakistani test as a possible explosion. Under the CTBT an on-site inspection would be required to determine whether the explosion was nuclear. [source]


A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania

GEOPHYSICAL PROSPECTING, Issue 3 2005
B. Tezkan
ABSTRACT Scalar radiomagnetotelluric measurements were carried out on a contaminated test area close to the Brazi Refinery in Romania in order to detect and to monitor a 1 m thick oil layer expected at 5 m depth. Radio transmitters broadcasting in a frequency range from 10 kHz to 300 kHz were selected to observe the apparent resistivity and the phase data associated with the E- and B-polarizations. They were located parallel and perpendicular to the assumed strike direction of the contamination plume. The data were interpreted by a 2D inversion technique from which the conductivity structure of the area was derived. The 2D inversion models of all profiles on the contaminated area show a poor-conductivity zone above the groundwater table which could be associated with the oil contamination. A first attempt was also made to monitor the contaminated layer: the radiomagnetotelluric measurements were repeated on the same profiles a year later, but this time in a dry period, not in a rainy one. The 2D inversion results of the measurements in the dry period indicate that the high-resistivity layer moved closer to the surface. Additional reference measurements were then carried out on a non-contaminated area situated at a distance from the refinery, in the opposite direction to the flow of the groundwater. These reference measurements were used for the derivation of the unperturbed geology and they were also compared with the measurements of the contaminated test area. There is a significant difference in the frequency dependences of the apparent resistivities of the reference and contaminated areas, which could indicate a contamination at shallow depth. The 2D inversion results show the increase of resistivity at a depth of about 5 m beneath the contaminated area where the oil contamination is expected according to the information from the boreholes. [source]


Infiltration, runoff and sediment production in blanket peat catchments: implications of field rainfall simulation experiments

HYDROLOGICAL PROCESSES, Issue 13 2002
J. Holden
Abstract Blanket peat covers the headwaters of many major European rivers. Runoff production in upland blanket peat catchments is flashy with large flood peaks and short lag times; there is minimal baseflow. Little is known about the exact processes of infiltration and runoff generation within these upland headwaters. This paper presents results from a set of rainfall simulation experiments performed on the blanket peat moorland of the North Pennines, UK. Rainfall was simulated at low intensities (3,12 mm h,1), typical of natural rainfall, on bare and vegetated peat surfaces. Runoff response shows that infiltration rate increases with rainfall intensity; the use of low-intensity rainfall therefore allows a more realistic evaluation of infiltration rates and flow processes than previous studies. Overland flow is shown to be common on both vegetated and bare peat surfaces although surface cover does exert some control. Most runoff is produced within the top few centimetres of the peat and runoff response decreases rapidly with depth. Little vertical percolation takes place to depths greater than 10 cm owing to the saturation of the peat mass. This study provides evidence that the quickflow response of upland blanket peat catchments is a result of saturation-excess overland flow generation. Rainfall,runoff response from small plots varies with season. Following warm, dry weather, rainfall tends to infiltrate more readily into blanket peat, not just initially but to the extent that steady-state surface runoff rates are reduced and more flow takes place within the peat, albeit at shallow depth. Sediment erosion from bare peat plots tends to be supply limited. Seasonal weather conditions may affect this in that after a warm, dry spell, surface desiccation allows sediment erosion to become transport limited. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Human Instability in Flood Flows,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2008
S.N. Jonkman
Abstract:, Loss of human stability in flood flows and consequent drowning are a high personal hazard. In this paper, we review past experimental work on human instability. The results of new experiments by the Flood Hazard Research Centre (FHRC) are also reported. These new results show that low depth/high velocity flood waters are more dangerous than suggested based on previous experimental work. It is discussed how human instability can be related to two physical mechanisms: moment instability (toppling) and friction instability (sliding). Comparison of the test results with these physical mechanisms suggests that the occurrence of instability in the tests by FHRC is related to friction instability. This mechanism appears to occur earlier than moment instability for the combination of shallow depth and high flow velocity. Those concerned to identify locations where high flood flows could be a threat to human life need to modify their hazard assessments accordingly. [source]


Cultivation of medicinal isabgol (Plantago ovata) in alkali soils in semiarid regions of Northern India

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2006
J. C. Dagar
Abstract There is growing global demand for medicinal drugs including isabgol (Plantago ovata). With increasing demand of food for an ever-increasing population in India, it is not possible to bring arable lands under cultivation for aromatic and medicinal plants. Salt-affected lands (both saline and alkali) occupy about 8·6 million ha. Due to poor physical properties and excessive exchangeable Na+, most of these lands do not support good vegetation cover. The marginal and salt-affected lands could be successfully utilized for the cultivation of aromatic and medicinal plants. We achieved almost complete germination of isabgol seeds using up to 5000,ppm salt-solution. Grain yield (including husk) was 1·47 to 1·58,t,ha,1 at pH 9·2 showing no significant yield reduction as compared to normal soil. At pH 9·6 the grain yield was 1·03 to 1·12,t,ha,1. At higher pH there was significant reduction in yield. Sowing in good moisture (at field capacity) of soil was found best, but to save time sowing at shallow depth in dry soil, followed by irrigation was also suitable as compared to broadcasting seeds. The chlorophyll content was greater 70 days after sowing compared to younger stages (50 days after sowing). The total chlorophyll and plant biomass were lower from crops grown by broadcasting methods of sowing as compared to two other methods of sowing. The leaf area index (LAI) was higher for the broadcasting method of sowing as compared to the other two methods. Na+ absorption increased and K+ and K+/Na+ ratio decreased with increase in pH. Results reported in this paper clearly indicate that isabgol can successfully be grown on moderately alkali soils up to pH 9·6 without the application of any amendment. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Ag-Cu-Pb-Bi-S Minerals Newly Discovered from the Ohori Base Metal Deposit, Yamagata Prefecture, NE Japan: Implications for Bi-metallogenesis in the Green-Tuff Region

RESOURCE GEOLOGY, Issue 1 2010
Yu Yokoro
Abstract The Ohori deposit, one of the base metal deposits in the Green-Tuff region, NE Japan, is composed of two types of mineralization; a skarn-type (Kaninomata orebody) made by the replacement of the Miocene calcareous layer, and a vein-type (Nakanomata orebody). While the ore mineral assemblage of the deposit (chalcopyrite, pyrite, sphalerite and galena) has been known for being rather simple, some Pb-Bi-S minerals have been discovered for the first time in the present study. The minerals mainly occur in the chalcopyrite-rich ores of both orebodies. They essentially belong to the Pb-Bi-S system and contain Cu and Ag in minor amounts, which correspond to the lillianite,gustavite solid solution series (phases Z and X), cosalite, neyite, felbertalite, krupkaite and Bi-bearing galena. The chalcopyrite-rich (Bi-bearing) ores from both orebodies are richer in chalcopyrite, pyrite and chlorite, and have higher homogenization temperatures (>300°C) of fluid inclusions, and higher FeS contents in sphalerite compared to the Bi-free ores. In the Green-Tuff region, Bi-minerals have been reported from many base metal deposits. Most of these Bi-bearing ore deposits are referred to as xenothermal-type deposits, and are characterized by the following common features; composite mineralization of high- and low-temperatures in the shallower environments, and close relationships with the Tertiary granitic rocks. The whole mineralization at the Ohori deposit also has a similar xenothermal character because of the coexistence of high-temperature chalcopyrite-rich ores with Pb-Bi-S minerals, which were formed by the influence of the Tertiary granitic rocks at a shallow depth. [source]


Glass and Mineral Chemistry of Northern Central Indian Ridge Basalts: Compositional Diversity and Petrogenetic Significance

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 6 2009
Dwijesh RAY
Abstract: The glass and mineral chemistry of basalts examined from the northern central Indian ridge (NCIR) provides an insight into magma genesis around the vicinity of two transform faults: Vityaz (VT) and Vema (VM). The studied mid-ocean ridge basalts (MORBs) from the outer ridge flank (VT area) and a near-ridge seamount (VM area) reveal that they are moderately phyric plagioclase basalts composed of plagioclase (phenocryst [An60,90] and groundmass [An35,79]), olivine (Fo81,88), diopside (Wo45,51, En25,37, Fs14,24), and titanomagnetite (FeOt,63.75 wt% and TiO2,22.69 wt%). The whole-rock composition of these basalts has similar Mg# [mole Mg/mole(Mg+Fe2+)] (VT basalt: ,0.56,0.58; VM basalt: ,0.57), but differ in their total alkali content (VT basalt: ,2.65; VM basalt: ,3.24). The bulk composition of the magma was gradually depleted in MgO and enriched in FeOt, TiO2, P2O5, and Na2O with progressive fractionation, the basalts were gradually enriched in Y and Zr and depleted in Ni and Cr. In addition, the ,REE of magma also increased with fractionation, without any change in the (La/Yb)N value. Glass from the VM seamount shows more fractionated characters (Mg#: 0.56,0.57) compared to the outer ridge flank lava of the VT area (Mg#: 0.63,0.65). This study concludes that present basalts experienced low-pressure crystallization at a relatively shallow depth. The geochemical changes in the NCIR magmas resulted from fractional crystallization at a shallow depth. As a consequence, spinel was the first mineral to crystallize at a pressure >10 kbar, followed by Fe-rich olivine at <10 kbar pressure. [source]


Epilepsy and Recreational Scuba Diving: An Absolute Contraindication or Can There Be Exceptions?

EPILEPSIA, Issue 5 2007
A Call for Discussion
Summary:, Recreational scuba diving is a popular sport, and people with epilepsy often ask physicians whether they may engage in diving. Scuba diving is not, however, without risk for anyone; apart from the risk of drowning, the main physiological problems, caused by exposure to gases at depth, are decompression illness, oxygen toxicity, and nitrogen narcosis. In the United Kingdom, the Sport Diving Medical Committee advises that, to dive, someone with epilepsy must be seizure free and off medication for at least 5 years. The reasons for this are largely theoretical. We review the available evidence in the medical literature and diving websites. The risk of seizures recurring decreases with increasing time in remission, but the risk is never completely abolished. We suggest that people with epilepsy who wish to engage in diving, and the physicians who certify fitness to dive, should be provided with all the available evidence. Those who have been entirely seizure-free on stable antiepileptic drug therapy for at least 4 years, who are not taking sedative antiepileptic drugs and who are able to understand the risks, should then be able to consider diving to shallow depths, provided both they and their diving buddy have fully understood the risks. [source]


Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation

GEOFLUIDS (ELECTRONIC), Issue 3 2009
MARIA BRUMM
Abstract Heat flow in the Sierra Nevada, CA, is low despite its young geologic age. We investigate the possibility that advective heat transport by groundwater flow leads to an underestimate of heat flow in the Sierras based purely on borehole measurements. Using temperature and discharge measurements at springs in Sagehen Basin, we find that groundwater removes the equivalent of approximately 20,40 mW m,2 of geothermal heat from the basin. This is comparable with other heat flow measurements in the region and indicates that, in this basin, at least, groundwater does transport a significant amount of geothermal heat within the basin. Additionally, we use estimates of the mean residence time of water discharged at the springs along with hourly temperature records in springs to provide constraints on groundwater flow depths within the basin. An analytical model based on these constraints indicates that the heat removed by groundwater may represent 20% to >90% of the total heat flow in the basin. Without better constraints on the regional hydrogeology and the depth of circulation, we cannot determine whether the heat discharged at the springs represents a change in the mode of heat transfer, i.e. from conduction to advection at shallow depths (<100 m) or whether this is a component of heat transfer that should be added to measured conductive values. If the latter is true, and Sagehen Basin is representative of the Sierras, basal heat flow in the Sierra Nevada may be higher than previously thought. [source]


Syntectonic infiltration by meteoric waters along the Sevier thrust front, southwest Montana

GEOFLUIDS (ELECTRONIC), Issue 4 2006
A. C. RYGEL
Abstract Structural, petrographic, and isotopic data for calcite veins and carbonate host-rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O-rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ,0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50,80°C for Cretaceous veins, 60,80°C for Eocene veins) fluids interacted with wall-rock carbonates at shallow depths (3,4 km in the Cretaceous, 2,3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra- and inter-vein variation in ,18O and ,13C. Carbonate host-rocks have a mean ,18OV-SMOW value of +22.2 ± 3, (1,), and both the Cretaceous veins and Eocene veins have ,18O ranging from values similar to those of the host-rocks to as low as +5 to +6,. The variation in vein ,13CV-PDB of ,1 to approximately +6, is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) ,18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ,18.5 to ,12.5,. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O ,18O values are ,16.3 to ,13.5,. Fluid,rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water ,18O related to changing paleogeography. Meteoric water-influenced ,18O values calculated here for Cretaceous to Eocene vein-forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern-day precipitation, in this part of the Idaho-Montana thrust belt. [source]


Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin

GEOFLUIDS (ELECTRONIC), Issue 1 2001
J. Tóth
Abstract The , 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi- to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre-Neogene basement of horst-and-graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr,d Aquitard, with a permeability of less than 1 md (10,15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure,elevation profiles; hydraulic head maps; and hydraulic cross-sections. Pressure,elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight-line segment of a hydrostatic gradient (,st = 9.8067 MPa km,1) and extend to depths of 1400,2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of ,dyn = 10,15 MPa km,1 over a vertical distance of 400,1000 m, or abrupt, with a pressure jump of up to 10 MPa km,1 over less than 100 m and a gradient of ,dyn > 20 MPa km,1. According to the hydraulic head maps for 13 100,500 m thick horizontal slices of the rock framework, the fluid potential in the near-surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna,Tisza interfluve, and the 100,110 m contours in the Nyírség uplands. Below depths of ,,600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ,escarpment' appears gradually in the elevation range of ,,1000 to ,,2800 m along an arcuate line which tracks a major regional fault zone striking NE,SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ,fluid potential bank' between a ,fluid potential highland' (500,2500 m) to the north and west, and a ,fluid potential basin' (100,500 m) to the south and east. A ,potential island' rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200,1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ,plumes' or ,ridges' may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island-like or ridge-like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression. [source]


Snow density variations: consequences for ground-penetrating radar

HYDROLOGICAL PROCESSES, Issue 7 2006
A. Lundberg
Abstract Reliable hydrological forecasts of snowmelt runoff are of major importance for many areas. Ground-penetrating radar (GPR) measurements are used to assess snowpack water equivalent for planning of hydropower production in northern Sweden. The travel time of the radar pulse through the snow cover is recorded and converted to snow water equivalent (SWE) using a constant snowpack mean density from the drainage basin studied. In this paper we improve the method to estimate SWE by introducing a depth-dependent snowpack density. We used 6 years measurements of peak snow depth and snowpack mean density at 11 locations in the Swedish mountains. The original method systematically overestimates the SWE at shallow depths (+25% for 0·5 m) and underestimates the SWE at large depths (,35% for 2·0 m). A large improvement was obtained by introducing a depth,density relation based on average conditions for several years, whereas refining this by using separate relations for individual years yielded a smaller improvement. The SWE estimates were substantially improved for thick snow covers, reducing the average error from 162 ± 23 mm to 53 ± 10 mm for depth range 1·2,2·0 m. Consequently, the introduction of a depth-dependent snow density yields substantial improvements of the accuracy in SWE values calculated from GPR data. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Fault rock analysis of the northern part of the Chelungpu Fault and its relation to earthquake faulting of the 1999 Chi-Chi earthquake, Taiwan

ISLAND ARC, Issue 1 2005
Kohtaro UjiieArticle first published online: 3 MAR 200
Abstract The 1999 Chi-Chi earthquake in Taiwan (Mw = 7.6) produced a surface rupture along the north,south-striking Chelungpu thrust fault with pure dip-slip (east side up) and left lateral strike-slip displacements. Near-field strong-motion data for the northern part of the fault illustrate a distinct lack of the high-frequency seismic radiation associated with a large slip (10,15 m) and a rapid slip velocity (2,4 m/s), suggesting a smooth seismic slip associated with low dynamic frictional resistance on the fault. A drillhole was constructed at shallow depths in the possible fault zones of the northern part of the Chelungpu Fault, which may have slipped during the 1999 earthquake. One of the zones consists of a 20-cm-thick, unconsolidated fault breccia with a chaotic texture lacking both discrete slip surfaces (e.g. Riedel shears) and grain crushing. Other possible fault zones are marked by the narrow (less than a few centimeters) gouge zone in which clayey material intrudes into the damaged zone outside of the gouge zone. These characteristic fault rock textures suggest that the slip mechanisms at shallow levels during the earthquake involved either granular flow of initially unconsolidated material or slip localization under elevated pore pressure along the narrow clayey gouge zone. Because both mechanisms lead to low dynamic frictional resistance on the fault, the rapid seismic slip in the deep portions of the fault (i.e. the source region of strong-motion radiation) could have been accommodated by frictionless slip on the shallow portions of the fault. The combination of strong-motion data and fault rock analysis suggests that smooth slip associated with low dynamic friction occurred on both the deep and shallow portions of the fault, resulting in a large slip between the source region and the surface in the northern region. [source]


Stresses at sites close to the Nojima Fault measured from core samples

ISLAND ARC, Issue 3-4 2001
Kiyohiko Yamamoto
Abstract The Nojima Fault in Awaji, Hyogo prefecture, Japan, was ruptured during the 1995 Hyogo-ken Nanbu earthquake (MJMA = 7.2). Toshima is located close to the fault segment, in which a large dislocation has been observed on the Earth's surface. Ikuha is near the southern end of the buried fault that extends from the surface rupture. Stresses are measured on core samples taken at depths of 310 m, 312 m and 415 m at Toshima and a depth of 351 m at Ikuha. The measured stresses show that both sites are in the field of a strike,slip regime, but compression dominates at Toshima. Defining the relative shear stress as the maximum shear stress divided by the normal stress on the maximum shear plane, the relative shear stress ranges from 0.42 to 0.54 at Toshima and is approximately 0.32 at Ikuha. While the value at Ikuha is moderate, those at Toshima are comparably large to those in areas close to the inferred fault of the 1984 Nagano-ken Seibu earthquake. Value amounts greater than 0.4 suggest that there are areas of large relative shear stress along faults, thus having the potential to generate earthquakes. Provided that the cores are correctly oriented, the largest horizontal stresses at shallow depths are in the direction from N113°E to N139°E at Toshima and N74°E at Ikuha, indicating that the fault does not orient optimally for the stress field at both sites. The slip is known to be predominant in the right-lateral strike,slip component. Although this slip may appear contradictory to the stress field at Toshima, the slip direction is found to be parallel to the measured stresses resolved on the fault plane for the first approximation. The ratio of shear stress to normal stress on the fault plane is roughly estimated to be greater than zero and smaller than 0.3 near Toshima. [source]


Investigation of physical and bathymetric characteristics of Lakes Abaya and Chamo, Ethiopia, and their management implications

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2006
Seleshi Bekele Awulachew
Abstract The purpose of this study was to investigate the physical parameters of Lakes Abaya and Chamo in the Ethiopian rift lakes system, including such physical characteristics as depth, water resources capacity, hydrology, water balances, and impacts of water use and degradation of their watersheds. These parameters have not previously been studied for these two lakes to any significant extent. This study describes the bathymetry survey undertaken for these two lakes, and the morphometric characteristics derived from it. This study is part of a research project developed to provide further details on such parameters as hydrology, water quality, sediment inflows and deposition, lake hydrodynamics and consumptive water uses. The bathymetric survey was conducted, utilizing a combination of global positioning system (GPS) and echo sounder. To calculate the morphometric characteristics, the background lake map was digitized, and the surveyed primary data were developed as digital values. The digital values were interpolated, generating grids of the elevation surface. The elevation area and elevation volume curves (capacity curves) of the two lakes were developed from the digital values, describing the water resources capacity of the lake water basins. The results of this study increase our understanding of the water resources of these two lakes, as well as provide better understanding of their vulnerability to human activities because of their shallow depths. Immediate application of the results, as a basis for continuation of this study, also is highlighted. [source]


Changes in survivorship, behavior, and morphology in native soft-shell clams induced by invasive green crab predators

MARINE ECOLOGY, Issue 3 2010
W. Lindsay Whitlow
Abstract Many studies on invasive species show reduced native densities, but few studies measure trait-mediated effects as mechanisms for changes in native growth rates and population dynamics. Where native prey face invasive predators, mechanisms for phenotypic change include selective predation, or induced behavioral or morphological plasticity. Invasive green crabs, Carcinus maenas, have contributed to declines in native soft-shell clams, Mya arenaria, in coastal New England, USA. We tested the hypothesis that clam ability to detect chemical cues from predators or damaged conspecifics would induce greater burrowing depth as a refuge from invasive crabs, and greater burrowing would require increased siphon growth. To determine how crab predation affected clam survivorship and phenotypic traits in the field, clams in exclosure, open, and crab enclosure plots were compared. Crab predation reduced clam density, and surviving clams were deeper and larger, with longer siphons. To determine whether the mechanism for these results was selective predation or induced plasticity, phenotypes were compared between clams exposed to chemical cues from crab predation and clams exposed to seawater in laboratory and field experiments. In response to crab predation cues, clams burrowed deeper, with longer siphons and greater siphon mass. Overall, crab predation removed clams with shorter siphons at shallow depths, and crab predation cues induced greater burrowing depths and longer siphons. Longer siphons and greater siphon mass of deeper clams suggests clams may allocate energy to siphon growth in response to crabs. By determining native behavior and morphological changes in response to an invasive predator, this study adds to our understanding of mechanisms for invasive impacts and illustrates the utility of measuring trait-mediated effects to investigate predator,prey dynamics. [source]


Genesis and Mixing/Mingling of Mafic and Felsic Magmas of Back-Arc Granite: Miocene Tsushima Pluton, Southwest Japan

RESOURCE GEOLOGY, Issue 1 2009
Ki-Cheol Shin
Abstract The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc-alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back-arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2,6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065,0.7085) and lower ,Nd(t) (,7.70 to ,4.35) than the MME of basaltic,dacitic composition (0.7044,0.7061 and ,0.53 to ,5.24), whereas most gray granites have intermediate chemical and Sr,Nd isotopic compositions (0.7061,0.7072 and ,3.75 to ,6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr,Nd,Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma,fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back-arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI-like composition, which plays an important role in the genesis of igneous rocks there. [source]


Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: three troublesome annual sedge weeds of rice

ANNALS OF APPLIED BIOLOGY, Issue 1 2009
B.S. Chauhan
Abstract Cyperus difformis, Cyperus iria and Fimbristylis miliacea are troublesome annual sedges of rice grown in many countries. Laboratory and screenhouse experiments were conducted to determine the effects of temperature, light, salt and water stress, seed burial depth, and flooding time, duration and depth on germination, emergence and growth of these three species. Germination of all the three species was stimulated by light and warm fluctuating temperatures. Germination of C. difformis was influenced to a greater degree by increasing salt and water stress than C. iria and F. miliacea. In all three species, seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of ,1 cm. Flooding, although not continuous or deep, had a suppressive effect on emergence and growth of C. iria and F. miliacea. Intermittent flooding to shallow depths, however, was less effective in controlling C. difformis; deep flooding was needed to suppress growth of C. difformis seedlings. When the flooding was delayed to 21 days after sowing, there was little growth reduction in all three species. [source]


Conservation of natural wilderness values in the Port Davey marine and estuarine protected area, south-western Tasmania

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2010
Graham J. Edgar
Abstract 1.Port Davey and associated Bathurst Harbour in south-western Tasmania represent one of the world's most anomalous estuarine systems owing to an unusual combination of environmental factors. These include: (i) large uninhabited catchment protected as a National Park; (ii) ria geomorphology but with fjord characteristics that include a shallow entrance and deep 12-km long channel connecting an almost land-locked harbour to the sea; (iii) high rainfall and riverine input that generate strongly-stratified estuarine conditions, with a low-salinity surface layer and marine bottom water; (iv) a deeply tannin-stained surface layer that blocks light penetration to depth; (v) very low levels of nutrients and low aquatic productivity; (vi) weak tidal influences; (vii) marine bottom water with stable temperature throughout the year; (viii) numerous endemic species; (ix) strongly depth-stratified benthic assemblages exhibiting high compositional variability over small spatial scales; (x) deepsea species present at anomalously shallow depths; (xi) no conspicuous introduced taxa; (xii) a predominance of fragile sessile invertebrates, including slow-growing fenestrate bryozoans; and (xii ) sponge spicule- and bryozoan-based sediments that are more characteristic of deep sea and polar environments than those inshore. 2.Although this region has historically been protected by its isolation, seven major anthropogenic stressors now threaten its natural integrity: boating, fishing, dive tourism, nutrient enrichment, introduced species, onshore development, and global climate change. These threats are not randomly distributed but disproportionately affect particular habitat types. 3.For management of environmental risk, the Port Davey,Bathurst Harbour region is subdivided into six biophysical zones, each with different ecological characteristics, values, and types and levels of potential threat. In response to the various threats, the Tasmanian Government has enacted an adaptive management regime that includes a multi-zoned marine protected area and the largest ,no-take' estuarine protected area in Australia. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Rapid seismic reflection imaging at the Clovis period Gault site in central Texas

ARCHAEOLOGICAL PROSPECTION, Issue 4 2007
John A. Hildebrand
Abstract Using a modified seismic reflection imaging system with rapid translation of receivers, stratigraphic profiles were collected at the Gault site in central Texas. For rapid data collection, spikeless geophone receivers were placed in sand-filled bags at tight spacing, and these receivers were rapidly pulled along the ground surface between shots. Shots were produced by a small hammer strike to a vertical pipe at 20-cm intervals. High quality ultrashallow seismic reflection profiles were collected at a rate of 25,m,h,1, significantly faster than what is possible with conventional seismic reflection imaging using individually planted geophones. Ground-penetrating radar was attempted, but abandoned owing to the poor penetration of the radar signals in the clay soils present at the Gault site. Electromagnetic induction grids were collected surrounding each seismic reflection profile, and provided information on near-surface ground water. Seismic reflection images of Gault site stratigraphy provided greater depth penetration than accessible from backhoe trenching and coring, and helped to better outline the site geological context. Seismic images reveal coherent reflections at shallow depths (0,2.5,m), and extensive scattering at deeper levels (2.5,8,m), underlain by reflection-free zones. These data are interpreted as clay and gravel layers overlaying palaeostream channels carved into the limestone bedrock. Where comparative data were available, the geophysical findings were corroborated by observations of site stratigraphy in archaeological excavation units, backhoe trenches and cores. Seismic reflection studies at the Gault site revealed a palaeochannel filled with pre-Clovis age sediments. Pre-Clovis age sediments are not known to occur at other locations within the Gault site. They provide a unique opportunity to test for cultural remains of great antiquity. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Insulating effect of coals and organic rich shales: implications for topography-driven fluid flow, heat transport, and genesis of ore deposits in the Arkoma Basin and Ozark Plateau

BASIN RESEARCH, Issue 2 2002
J.A. Nunn
ABSTRACT Sedimentary rocks rich in organic matter, such as coal and carbonaceous shales, are characterized by remarkably low thermal conductivities in the range of 0.2,1.0 W m,1 °C,1, lower by a factor of 2 or more than other common rock types. As a result of this natural insulating effect, temperature gradients in organic rich, fine-grained sediments may become elevated even with a typical continental basal heat flow of 60 mW m,2. Underlying rocks will attain higher temperatures and higher thermal maturities than would otherwise occur. A two-dimensional finite element model of fluid flow and heat transport has been used to study the insulating effect of low thermal conductivity carbonaceous sediments in an uplifted foreland basin. Topography-driven recharge is assumed to be the major driving force for regional groundwater flow. Our model section cuts through the Arkoma Basin to Ozark Plateau and terminates near the Missouri River, west of St. Louis. Fluid inclusions, organic maturation, and fission track evidence show that large areas of upper Cambrian rocks in southern Missouri have experienced high temperatures (100,140 °C) at shallow depths (< 1.5 km). Low thermal conductivity sediments, such as coal and organic rich mudstone were deposited over the Arkoma Basin and Ozark Plateau, as well as most of the mid-continent of North America, during the Late Palaeozoic. Much of these Late Palaeozoic sediments were subsequently removed by erosion. Our model results are consistent with high temperatures (100,130 °C) in the groundwater discharge region at shallow depths (< 1.5 km) even with a typical continental basal heat flow of 60 mW m,2. Higher heat energy retention in basin sediments and underlying basement rocks prior to basin-scale fluid flow and higher rates of advective heat transport along basal aquifers owing to lower fluid viscosity (more efficient heat transport) contribute to higher temperatures in the discharge region. Thermal insulation by organic rich sediments which traps heat transported by upward fluid advection is the dominant mechanism for elevated temperatures in the discharge region. This suggests localized formation of ore deposits within a basin-scale fluid flow system may be caused by the juxtaposition of upward fluid discharge with overlying areas of insulating organic rich sediments. The additional temperature increment contributed to underlying rocks by this insulating effect may help to explain anomalous thermal maturity of the Arkoma Basin and Ozark Plateau, reducing the need to call upon excessive burial or high basal heat flow (80,100 mW m,2) in the past. After subsequent uplift and erosion remove the insulating carbonaceous layer, the model slowly returns to a normal geothermal gradient of about 30 °C km,1. [source]


Hydrogeochemistry and Water Quality Evaluation along the Flow Path in the Unconfined Aquifer of the Düzce Plain, North-western Turkey

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Nail ÜNSAL
Abstract: The Düzce Plain has a multi-aquifer system, which consists of a near surface unconfined aquifer, along with first and second deeper confined aquifers. Hydrochemical evolution and water quality are related to infiltration of the precipitation, recharge from the formations surrounding the plain, flow path of groundwater and the relationship between surface and groundwater. The groundwater in the unconfined aquifer flows towards the Efteni Lake and the Büyük Melen River. Surface waters are divided into two main hydrochemical facies in the study area: (a) Ca2+,HCO3,; and (b) Ca2+, Mg2+,HCO3, SO2,4. The groundwater has generally three main hydrochemical facies: (a) Ca2+,HCO,; (b) Ca2+, Mg2+,HCO,3; and (c) Ca2+, Mg2+,HCO,3, CI,. The hydrochemical facies "a" and "b" dominate within shallow depths in recharge areas under rapid flow conditions, while hydrochemical facies "c" characterizes shallow and mixed groundwater, which dominate intermediate or discharge areas (near Efteni Lake and Büyük Melen River) during low flow conditions and agricultural contamination. Calcium and bicarbonate ions, total hardness and electrical conductivity of total dissolved solids (EC-TDS) values increase along the groundwater flow path; but these parameters remain within the limits specified by the standards set for industrial and agricultural usages. [source]


Seismogenic Structure around the Epicenter of the May 12, 2008 Wenchuan Earthquake from Micro-seismic Tomography

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
Meijian AN
Abstract: A three-dimensional local-scale P -velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of ,2 km. The high-resolution P -velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least ,10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu-Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respe tively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a ,7 km offset with ,5 km vertical component. [source]


Preliminary Results of In-situ Stress Measurements along the Longmenshan Fault Zone after the Wenchuan Ms 8.0 Earthquake

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2009
Manlu WU
Abstract: Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (,20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake. [source]