Home About us Contact | |||
Shales
Kinds of Shales Terms modified by Shales Selected AbstractsANACORACID SHARKS FROM THE ALBIAN (LOWER CRETACEOUS) PAWPAW SHALE OF TEXASPALAEONTOLOGY, Issue 4 2007MIKAEL SIVERSON Abstract:, Recent collecting from the Pawpaw Shale in north-east Texas has yielded several hundred teeth of anacoracid sharks. The material allows for a much-needed revision of the Late Albian anacoracids from North America. The previously recognized Squalicorax sp., also referred to as S. volgensis in more recent publications, is a mix of two different species: S. priscoserratus sp. nov. and S. pawpawensis sp. nov. In addition to these two new species, a single tooth is assigned to S. aff. S. baharijensis. Our data indicate that anacoracids were a considerably more diverse group in the North American Cretaceous than previously thought. We attribute much of the underestimation of diversity to vague species concepts, poor preparation techniques and the associated lack of attention to certain dental features, in particular neck morphology, root surface porosity and the root's vascularization. [source] THE TAXONOMIC AND PHYLOGENETIC POSITION OF THE PLESIOSAUROIDEA FROM THE LOWER JURASSIC POSIDONIA SHALE OF SOUTH-WEST GERMANYPALAEONTOLOGY, Issue 3 2007FRANZISKA GROßMANNArticle first published online: 17 MAY 200 Abstract:, The two plesiosauroid species from the Posidonia shale of Holzmaden, ,Plesiosaurus'guilelmiimperatoris and ,Plesiosaurus'brachypterygius, do not belong to Plesiosaurus but form new monotypic genera. The new genus Hydrorion is erected for ,P.'brachypterygius, and the genus Seeleyosaurus is re-established for ,P.'guilelmiimperatoris. The recently described species Plesiopterys wildii is regarded as a junior synonym of S. guilelmiimperatoris. A short phylogenetic analysis shows that S. guilelmiimperatoris and Muraenosaurus are basal elasmosaurs. H. brachypterygius, Occitanosaurus tournemirensis from France and Microcleidus homalospondylus from England form a monophyletic clade, which is the sister taxon to the Cretaceous elasmosaurs. A palaeobiogeographical comparison of plesiosaur localities in the Lower Jurassic shows distinct palaeobiogeographical zones for the Toarcian, with different plesiosaur taxa in England, Germany and France. [source] VARIATIONS IN COMPOSITION, PETROLEUM POTENTIAL AND KINETICS OF ORDOVICIAN , MIOCENE TYPE I AND TYPE I-II SOURCE ROCKS (OIL SHALES): IMPLICATIONS FOR HYDROCARBON GENERATION CHARACTERISTICSJOURNAL OF PETROLEUM GEOLOGY, Issue 1 2010H. I. Petersen Lacustrine and marine oil shales with Type I and Type I-II kerogen constitute significant petroleum source rocks around the world. Contrary to common belief, such rocks show considerable compositional variability which influences their hydrocarbon generation characteristics. A global set of 23 Ordovician , Miocene freshwater and brackish water lacustrine and marine oil shales has been studied with regard to their organic composition, petroleum potential and generation kinetics. In addition their petroleum generation characteristics have been modelled. The oil shales can be classified as lacosite, torbanite, tasmanite and kukersite. They are thermally immature. Most of the shales contain >10 wt% TOC and the highest sulphur contents are recorded in the brackish water and marine oil shales. The kerogen is sapropelic and is principally composed of a complex of algal-derived organic matter in the form of: (i) telalginite (Botryococcus-, Prasinophyte- (Tasmanites?) or Gloeocapsomorpha-type); (ii) lamalginite (laminated, filamentous or network structure derived from Pediastrum- or Tetraedron-type algae, from dinoflagellate/acritarch cysts or from thin-walled Prasinophyte-type algae); (iii) fluorescing amorphous organic matter (AOM) and (iv) liptodetrinite. High atomic H/C ratios reflect the hydrogen-rich Type I and Type I-II kerogen, and Hydrogen Index values generally >300 mg HC/g TOC and reaching nearly 800 mg HC/g TOC emphasise the oil-prone nature of the oil shales. The kerogen type and source rock quality appear not to be related to age, depositional environment or oil shale type. Therefore, a unique, global activation energy (Ea) distribution and frequency factor (A) for these source rocks cannot be expected. The differences in kerogen composition result in considerable variations in Ea -distributions and A-factors. Generation modelling using custom kinetics and the known subsidence history of the Malay-Cho Thu Basin (Gulf of Thailand/South China Sea), combined with established and hypothetical temperature histories, show that the oil shales decompose at different rates during maturation. At a maximum temperature of ,120°C reached during burial, only limited kerogen conversion has taken place. However, oil shales characterised by broader Ea -distributions with low Ea -values (and a single approximated A-factor) show increased decomposition rates. Where more deeply buried (maximum temperature ,150°C), some of the brackish water and marine oil shales have realised the major part of their generation potential, whereas the freshwater oil shales and other brackish water oil shales are only ,30,40% converted. At still higher temperatures between ,165°C and 180°C all oil shales reach 90% conversion. Most hydrocarbons from these source rocks will be generated within narrow oil windows (,20,80% kerogen conversion). Although the brackish water and marine oil shales appear to decompose faster than the freshwater oil shales, this suggests that with increasing heatflow the influence of kerogen heterogeneity on modelling of hydrocarbon generation declines. It may thus be critical to understand the organic facies of Type I and Type I-II source rocks, particularly in basins with moderate heatflows and restricted burial depths. Measurement of custom kinetics is recommended, if possible, to increase the accuracy of any computed hydrocarbon generation models. [source] LOWER SILURIAN "HOT SHALES" IN JORDAN: A NEW DEPOSITIONAL MODELJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2009D. K. Loydell Data are presented from the Batra Formation (also known as the Mudawwara Shale Formation) of a core from well BG-14 in the Batna el Ghoul area, southern Jordan, which enable a new depositional model to be proposed for the middle Rhuddanian (lower Llandovery, Silurian) "hot shale" which may be applicable to other Arabian and North African "hot shales" of similar stratigraphical age. This "hot shale" probably results from rapid early burial of organic carbon associated with a minor regression during which anoxic bottom conditions were maintained for most, but not all, of the time. Evidence for regression comes from (1) increased sediment grain size within the "hot shale" by comparison with underlying shales; (2) palynological changes including a decrease in acritarch species diversity; an increase in the relative abundance of sphaeromorphs, veryhachiids with three processes and acritarchs with short, simple processes; and a decrease in the relative abundance of acanthomorphs; (3) a positive ,13Corg excursion (other Late Ordovician and Silurian positive ,13Corg excursions occur during regressions); and (4) very brief intervals of oxygenation (associated with sediment influx) reflected in the preservation of graptolites as three-dimensional pyrite internal moulds, rather than as flattened periderm. The minor regression reflects a eustatic sea-level fall, evidence for which has recently been presented from several regions, including Arctic Canada, Bohemia and Scotland. The BG-14 "hot shale" is shown to be thicker than estimated in previous studies. Previous TOC measurements from the upper part of the "hot shale" were affected by the weathering of overlying strata in the BG-14 core. ICP-MS measurements show that uranium content is high in these weathered levels, extending the stratigraphical extent of the "hot shale" interval into the middle Rhuddanian. Depositional models such as that presented here rely on a robust biostratigraphical framework; in the Ordovician and Silurian of Arabia and North Africa, this can be provided by graptolites and chitinozoans. [source] PETROLEUM POTENTIAL, THERMAL MATURITY AND THE OIL WINDOW OF OIL SHALES AND COALS IN CENOZOIC RIFT BASINS, CENTRAL AND NORTHERN THAILANDJOURNAL OF PETROLEUM GEOLOGY, Issue 4 2006H. I. Petersen Oil shales and coals occur in Cenozoic rift basins in central and northern Thailand. Thermally immature outcrops of these rocks may constitute analogues for source rocks which have generated oil in several of these rift basins. A total of 56 oil shale and coal samples were collected from eight different basins and analysed in detail in this study. The samples were analysed for their content of total organic carbon (TOC) and elemental composition. Source rock quality was determined by Rock-Eval pyrolysis. Reflected light microscopy was used to analyse the organic matter (maceral) composition of the rocks, and the thermal maturity was determined by vitrinite reflectance (VR) measurements. In addition to the 56 samples, VR measurements were carried out in three wells from two oil-producing basins and VR gradients were constructed. Rock-Eval screening data from one of the wells is also presented. The oil shales were deposited in freshwater (to brackish) lakes with a high preservation potential (TOC contents up to 44.18 wt%). They contain abundant lamalginite and principally algal-derived fluorescing amorphous organic matter followed by liptodetrinite and telalginite (Botryococcus-type). Huminite may be present in subordinate amounts. The coals are completely dominated by huminite and were formed in freshwater mires. VR values from 0.38 to 0.47%Ro show that the exposed coals are thermally immature. VR values from the associated oil shales are suppressed by 0.11 to 0.28%Ro. The oil shales have H/C ratios >1.43, and Hydrogen Index (HI) values are generally >400 mg HC/g TOC and may reach 704 mg HC/ gTOC. In general, the coals have H/C ratios between about 0.80 and 0.90, and the HI values vary considerably from approximately 50 to 300 mg HC/gTOC. The HImax of the coals, which represent the true source rock potential, range from ,160 to 310 mg HC/g TOC indicating a potential for oil/gas and oil generation. The steep VR curves from the oil-producing basins reflect high geothermal gradients of ,62°C/km and ,92°C/km. The depth to the top oil window for the oil shales at a VR of ,0.70%Ro is determined to be between ,1100 m and 1800 m depending on the geothermal gradient. The kerogen composition of the oil shales and the high geothermal gradients result in narrow oil windows, possibly spanning only ,300 to 400 m in the warmest basins. The effective oil window of the coals is estimated to start from ,0.82 to 0.98%Ro and burial depths of ,1300 to 1400 m (,92°C/km) and ,2100 to 2300 m (,62°C/km) are necessary for efficient oil expulsion to occur. [source] First record of the brachiopod Lingulella waptaensis with pedicle from the Middle Cambrian Burgess ShaleACTA ZOOLOGICA, Issue 2 2010Sandra Pettersson Stolk Abstract Pettersson Stolk, S., Holmer, L. E. and Caron, J -B. 2010. First record of the brachiopod Lingulella waptaensis with pedicle from the Middle Cambrian Burgess Shale. ,Acta Zoologica (Stockholm) 91: 150,162 The organophosphatic shells of linguloid brachiopods are a common component of normal Cambrian,Ordovician shelly assemblages. Preservation of linguloid soft-part anatomy, however, is extremely rare, and restricted to a few species in Lower Cambrian Konservat Lagerstätten. Such remarkable occurrences provide unique insights into the biology and ecology of early linguloids that are not available from the study of shells alone. Based on its shells, Lingulella waptaensis Walcott, was originally described in 1924 from the Middle Cambrian Burgess Shale but despite the widespread occurrence of soft-part preservation associated with fossils from the same levels, no preserved soft parts have been reported. Lingulella waptaensis is restudied herein based on 396 specimens collected by Royal Ontario Museum field parties from the Greater Phyllopod Bed (Walcott Quarry Shale Member, British Columbia). The new specimens, including three with exceptional preservation of the pedicle, were collected in situ in discrete obrution beds. Census counts show that L. waptaensis is rare but recurrent in the Greater Phyllopod Bed, suggesting that this species might have been generalist. The wrinkled pedicle protruded posteriorly between the valves, was composed of a central coelomic space, and was slender and flexible enough to be tightly folded, suggesting a thin chitinous cuticle and underlying muscular layers. The nearly circular shell and the long, slender and highly flexible pedicle suggest that L. waptaensis lived epifaunally, probably attached to the substrate. Vertical cross-sections of the shells show that L. waptaensis possessed a virgose secondary layer, which has previously only been known from Devonian to Recent members of the Family Lingulidae. [source] From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend,Lower Zechstein) of the Wolsztyn,Pogorzela high, west PolandGEOLOGICAL JOURNAL, Issue 2-3 2010Hubert Kiersnowski Abstract The tectonic Wolsztyn,Pogorzela palaeo-High (WPH) is the south-eastern termination of the Brandenburg,Wolsztyn High (western Poland), which during Late Permian times was an intra-basin ridge surrounded by Upper Rotliegend sedimentary basins within the Southern Permian Basin. The geological history and structural framework of the WPH are complex. The High belongs to the Variscan Externides, consisting at present of strongly folded, faulted and eroded Viséan to Namurian flysch deposits capped by a thick cover of Upper Carboniferous,Lower Permian volcanic rocks. This sedimentary-volcanic complex was strongly fragmented and vertically differentiated by tectonic movements and subsequently eroded, resulting in the deposition of coarse clastics surrounding uplifted tectonic blocks. During late Rotliegend time, arid climatic conditions significantly influenced occurrences of specific facies assemblages: alluvial, fluvial, aeolian and playa. Sedimentological study helped to recognize the interplay of tectonic and palaeoclimatic factors and to understand the phenomenon of aeolian sandstones interbedded with coarse deposits of alluvial cones close to fault scarps. Subsequent tectonic and possible thermal subsidence of the studied area was synchronous with inundation by the Zechstein Sea. The rapid inundation process allowed for the preservation of an almost perfectly protected Uppermost Rotliegend landscape. Based on 3D seismic data from the base Zechstein reflector, a reconstruction of Rotliegend palaeogeomorphology was carried out, which shows examples of tectonic rejuvenation of particular tectonic blocks within the WPH area before inundation by the Zechstein Sea. The inundation led to the deposition of the marine Kupferschiefer Shale followed by the Zechstein Limestone. In the deeper parts of the basin the latter is developed in thin basinal facies: in shallow parts (e.g. uplifted tectonic blocks forming in some cases islands), carbonate buildups were formed. The remarkable thickness of those buildups (bryozoan reefs) is interpreted as due to stable tectonic subsidence together with a rise of sea level. A detailed study of carbonate buildups has showed that their internal structure reflects changes in shallow marine environments and even emersion events, caused by sea-level oscillations and tectonic movements of the reef substrate. Copyright © 2010 John Wiley & Sons, Ltd. [source] Sequence stratigraphy of the upper Millstone Grit (Yeadonian, Namurian), North WalesGEOLOGICAL JOURNAL, Issue 5 2007Rhodri M. Jerrett Abstract The upper Millstone Grit strata (Yeadonian, Namurian) of North Wales have been studied using sedimentological facies analysis and sequence stratigraphy. These strata comprise two cyclothems, each containing prodelta shales (Holywell Shale) that pass gradationally upwards into delta-front and delta-plain deposits (Gwespyr Sandstone Formation). The deltas formed in shallow water (<100,m), were fluvial-dominated, had elongate and/or sheet geometries and are assigned to highstand systems tracts. Two delta complexes with distinctive sandstone petrographies are identified: (1) a southerly derived, quartzose delta complex sourced locally from the Wales-Brabant Massif, and (2) a feldspathic delta complex fed by a regional source(s) to the north and/or west. The feldspathic delta complex extended further south in the younger cyclothem. A multistorey braided-fluvial complex (Aqueduct Grit, c. 25,m thick) is assigned to a lowstand systems tract, and occupies an incised valley that was eroded into the highstand feldspathic delta complex in the younger cyclothem. A candidate incised valley cut into the highstand feldspathic delta complex in the older cyclothem is also tentatively identified. Transgressive systems tracts are thin (<5,m) and contain condensed fossiliferous shales (marine bands). The high-resolution sequence stratigraphic framework interpreted for North Wales can be readily traced northwards into the Central Province Basin (,Pennine Basin'), supporting the notion that high-frequency, high-magnitude sea-level changes were the dominant control on stratigraphic architecture. Copyright © 2007 John Wiley & Sons, Ltd. [source] Biostratigraphical dating of the Thornton Fossil Konservat-Lagerstätte, Silurian, Illinois, USAGEOLOGICAL JOURNAL, Issue 3 2002David K. Loydell Abstract Graptoloid graptolites, conodonts and chitinozoans from the lower part of the Racine Dolomite Formation at the Material Services Corporation quarry at Thornton indicate that the Fossil Konservat-Lagerstätte here is of late Sheinwoodian (early Wenlock) age. It is thus of an age approximately midway between those of the other Midwest Lagerstätten: within the Brandon Bridge Formation at Waukesha (Telychian), and the Mississinewa Shale (Gorstian) and Lecthaylus Shale (Gorstian). Conodonts indicate that the Fossil Konservat-Lagerstätte at Thornton corresponds to the ,post Kockelella walliseri interregnum' sensu Jeppsson (1997, Transactions of the Royal Society of Edinburgh: Earth Sciences88: 91,114). Copyright © 2002 John Wiley & Sons, Ltd. [source] Debris flow and slide deposits at the top of the Internal Liguride ophiolitic sequence, Northern Apennines, Italy: A record of frontal tectonic erosion in a fossil accretionary wedgeISLAND ARC, Issue 1 2001Michele Marroni Abstract In the Northern Apennines, the Internal Liguride units are characterized by an ophiolite sequence that represents the stratigraphic base of a late Jurassic,early Paleocene sedimentary cover. The Bocco Shale represents the youngest deposit recognized in the sedimentary cover of the ophiolite and can be subdivided into two different groups of deep sea sediments. The first group is represented by slide, debris flow and high density turbidity current-derived deposits, whereas the second group consists of thin-bedded turbidites. Facies analysis and provenance studies indicate, for the former group, small and scarcely evoluted flows that rework an oceanic lithosphere and its sedimentary cover. We interpret the Bocco Shale as an ancient example of a deposit related to the frontal tectonic erosion of the accretionary wedge slope. The frontal tectonic erosion resulted in a large removal of materials, from the accretionary wedge front, that was reworked as debris flows and slide deposits sedimented on the lower plate above the trench deposits. The frontal tectonic erosion was probably connected with subduction of oceanic crust characterized by positive topographic relief. This interpretation can be also applied for the origin of analogous deposits of Western Alps and Corsica. [source] Anatomy and lifestyles of Early Cambrian priapulid worms exemplified by Corynetis and Anningvermis from the Maotianshan Shale (SW China)LETHAIA, Issue 1 2004DI-YING HUANG Accurate information on the anatomy and ecology of worms from the Cambrian Lagerstätten of SW China is sparse. The present study of two priapulid worms Anningvermis n. gen. and Corynetis Luo & Hu, 1999 from the Lower Cambrian Maotianshan Shale biota brings new information concerning the anatomical complexity, functional morphology and lifestyles of the Early Cambrian priapulids. Comparisons are made with Recent priapulids from Sweden (live observations, SEM). The cuspidate pharyngeal teeth of Anningvermis (circumoral pentagons) and the most peculiar radiating oral crown of Corynetis added to the very elongate pharynx of these two forms are interpreted as two different types of grasping apparatus possibly involved in the capture of small prey. Corynetis and Anningvermis are two representative examples of the Early Cambrian endobenthic communities largely dominated by priapulid worms (more than ten species in the Maotianshan Shale biota) and to a much lesser extent by brachiopods. Corynetis and Anningvermis were probably active mud-burrowers and predators of small meiobenthic animals. Likewise predator priapulid worms exploited the interface layer between the seawater and bottom sediment, where meiobenthic organisms were abundant and functioned as prey. This implies that complex prey-predator relationship between communities already existed in the Early Cambrian. This study also shows that the circumoral pentagonal teeth and caudal appendage were present in the early stages of the evolutionary history of the group and were important features of the priapulid body plan already in the Early Cambrian. Two new families, one new genus and new species are introduced and described in the appendix. [source] New anomalocaridid appendages from the Burgess Shale, CanadaPALAEONTOLOGY, Issue 4 2010ALLISON C. DALEY Abstract:, The complex history of description of the anomalocaridids has partly been caused by the fragmentary nature of these fossils. Frontal appendages and mouth parts are more readily preserved than whole-body assemblages, so the earliest work on these animals examined these structures in isolation. After several decades of research, these disarticulated elements were assembled together to reconstruct the anomalocaridid body plan, and a total of three Burgess Shale genera, Anomalocaris, Laggania and Hurdia, were described in full. Here we present new frontal appendage material of additional anomalocaridid taxa from the ,Middle' Cambrian (Series 3) Burgess Shale Formation in Canada, showing that the diversity of anomalocaridids in this locality is even higher than previously thought. Material includes Amplectobelua stephenensis sp. nov., the first known occurrence of this genus outside of China; Caryosyntrips serratus gen. et sp. nov., which is similar to the Anomalocaris appendage but has a straighter outline and a different arrangement of spines; and an appendage that may be either the Laggania appendage or a third morph of the Hurdia appendage. The new anomalocaridid material is contemporaneous with the previously described taxa Anomalocaris, Laggania, and Hurdia, and the differences in morphology between the frontal appendages may reflect different feeding strategies. The stratigraphically lowest locality, S7 on Mount Stephen, yields material from all anomalocaridid taxa, but the assemblages in the younger quarries on Fossil Ridge are dominated by Anomalocaris and Hurdia only. [source] The bivalved arthropods Isoxys and Tuzoia with soft-part preservation from the Lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia)PALAEONTOLOGY, Issue 6 2009DIEGO C. GARCÍA-BELLIDO Abstract:, Abundant material from a new quarry excavated in the lower Cambrian Emu Bay Shale (Kangaroo Island, South Australia) and, particularly, the preservation of soft-bodied features previously unknown from this Burgess Shale-type locality, permit the revision of two bivalved arthropod taxa described in the late 1970s, Isoxys communis and Tuzoia australis. The collections have also produced fossils belonging to two new species: Isoxys glaessneri and Tuzoia sp. Among the soft parts preserved in these taxa are stalked eyes, digestive structures and cephalic and trunk appendages, rivalling in quality and quantity those described from better-known Lagerstätten, notably the lower Cambrian Chengjiang fauna of China and the middle Cambrian Burgess Shale of Canada. [source] ANACORACID SHARKS FROM THE ALBIAN (LOWER CRETACEOUS) PAWPAW SHALE OF TEXASPALAEONTOLOGY, Issue 4 2007MIKAEL SIVERSON Abstract:, Recent collecting from the Pawpaw Shale in north-east Texas has yielded several hundred teeth of anacoracid sharks. The material allows for a much-needed revision of the Late Albian anacoracids from North America. The previously recognized Squalicorax sp., also referred to as S. volgensis in more recent publications, is a mix of two different species: S. priscoserratus sp. nov. and S. pawpawensis sp. nov. In addition to these two new species, a single tooth is assigned to S. aff. S. baharijensis. Our data indicate that anacoracids were a considerably more diverse group in the North American Cretaceous than previously thought. We attribute much of the underestimation of diversity to vague species concepts, poor preparation techniques and the associated lack of attention to certain dental features, in particular neck morphology, root surface porosity and the root's vascularization. [source] First Mesozoic Scutigeromorph Centipede, from the Lower Cretaceous of BrazilPALAEONTOLOGY, Issue 3 2001Heather M. Wilson The first Mesozoic scutigeromorph centipede (Myriapoda: Chilopoda), Fulmenocursor tenax gen. et sp. nov., is described from the Lower Cretaceous (Aptian) Crato Formation of north-east Brazil. Previously described fossil Scutigeromorpha are known from Dominican and Baltic amber, the Carboniferous (Westphalian D) Francis Creek Shale of Mazon Creek, Illinois, the Silurian and Devonian of Britain, and the Devonian of New York State. [source] Chemical, Isotopic, and Fluid Inclusion Evidence for the Hydrothermal Alteration of the Footwall Rocks of the BIF-Hosted Iron Ore Deposits in the Hamersley District, Western AustraliaRESOURCE GEOLOGY, Issue 2 2003Makoto Haruna Abstract. The petrography, chemical, fluid inclusion and isotope analyses (O, Rb-Sr) were conducted for the shale samples of the Mount McRae Shale collected from the Tom Price, Newman, and Paraburdoo mines in the Hamersley Basin, Western Australia. The Mount McRae Shale at these mines occurs as a footwall unit of the secondary, hematite-rich iron ores derived from the Brockman Iron Formation, one of the largest banded iron formations (BIFs) in the world. Unusually low contents of Na, Ca, and Sr in the shales suggest that these elements were leached away from the shale after deposition. The ,18O (SMOW) values fall in the range of + 15.0 to +17.9 per mil and show the positive correlation with calculated quartz/sericite ratios of the shale samples. This suggests that the oxygen isotopic compositions of shale samples were homogenized and equilibrated by postdepositional event. The pyrite nodules hosted by shales are often rimmed by thin layers of silica of varying crystallinity. Fluid inclusions in quartz crystals rimming a pyrite nodule show homogenization temperatures ranging from 100 to 240d,C for 47 inclusions and salinities ranging from 0.4 to 12.3 wt% NaCl equivalent for 18 inclusions. These fluid inclusion data give direct evidence for the hydrothermal activity and are comparable to those of the vein quartz collected from the BIF-derived secondary iron ores (Taylor et al, 2001). The Rb-Sr age for the Mount McRae Shale is 1,952 ± 289 Ma and at least 200 million years younger than the depositional age of the Brockman Iron Formation of , 2.5 Ga in age. All the data obtained in this study are consistent with the suggestion that high temperature hydrothermal fluids were responsible for both the secondary iron ore formation and the alteration of the Mount McRae Shale. [source] Reply to Butterfield on stem-group "worms": fossil lophotrochozoans in the Burgess ShaleBIOESSAYS, Issue 2 2007Jean-Bernard Caron No abstract is available for this article. [source] The ammonoids from the Argiles de Teguentour of Oued Temertasset (early Late Tournaisian; Mouydir, Algeria)FOSSIL RECORD-MITTEILUNGEN AUS DEM MUSEUM FUER NATURKUNDE, Issue 1 2010Dieter Korn Abstract The ammonoids from the Teguentour Shales (Tournaisian, Early Carboniferous) of Oued Temertasset (Mouydir, Algeria) are described monographically. The following new ammonoid taxa are introduced: Imitoceras dimidium n. sp., Imitoceras strictum n. sp., Triimitoceras tantulum n. sp., Acrocanites disparilis n. sp., Jdaidites cultellus n. sp., Pericyclus tortuosus n. sp., Pericyclus circulus n. sp., Pericyclus trochus n. sp., Pericyclus intercisus n. sp., Nodopericyclus n. gen., Nodopericyclus circumnodosus n. sp., Nodopericyclus deficerus n. sp., Ammonellipsites serus n. sp., Helicocyclus formosus n. sp., Helicocyclus inornatus n. sp., Helicocyclus laxaris n. sp., Ouaoufilalites creber n. sp., family Temertassetiidae n. fam., Temertassetia n. gen., Temertassetia temertassetensis n. sp., Temertassetia secunda n. sp., Temertassetia decorata n. sp., Temertassetia coarta n. sp., Jerania n. gen., Jerania jeranensis n. sp., Jerania sicilicula n. sp., Jerania pusillens n. sp., Jerania subvexa n. sp., Jerania persimilis n. sp., Kusinia n. gen., Kusinia falcifera n. sp., Bouhamedites insalahensis n. sp., Muensteroceras subparallelum n. sp., M ensteroceras multitudum n. sp., Follotites n. gen., Follotites folloti n. sp., Follotites stelus n. sp., Follotites flexus n. sp., family Rotopericyclidae n. fam., Eurites permutus n. sp., Eurites doliaris n. sp., Mouydiria n. gen., Mouydiria mouydirensis n. sp., Mouydiria scutula n. sp., Rotopericyclus kaufmanni n. sp., Rotopericyclus rathi n. sp., Rotopericyclus wendti n. sp., Rotopericyclus lubesederi n. sp., subfamily Dzhaprakoceratinae n. subfam., Dzhaprakoceras punctum n. sp., Dzhaprakoceras amplum n. sp., Dzhaprakoceras vergum n. sp., Dzhaprakoceras biconvexum n. sp., Progoniatitinae n. subfam., Progoniatites uncus n. sp., Progoniatites pilus n. sp., Progoniatites paenacutus n. sp., Progoniatites globulus n. sp., Habadraitinae n. subfam., Habadraites n. gen., Habadraites weyeri n. sp., Habadraites supralatus n. sp., Primogoniatites n. gen., Primogoniatites fundator n. sp., Antegoniatitinae n. subfam., Antegoniatites n. gen., and Antegoniatites anticiparis n. sp.. The ammonoids occur in three successive assemblages and are the richest ammonoid faunas of the time interval worldwide. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Seismic anisotropy of shalesGEOPHYSICAL PROSPECTING, Issue 5 2005C.M. Sayers ABSTRACT Shales are a major component of sedimentary basins, and they play a decisive role in fluid flow and seismic-wave propagation because of their low permeability and anisotropic microstructure. Shale anisotropy needs to be quantified to obtain reliable information on reservoir fluid, lithology and pore pressure from seismic data, and to understand time-to-depth conversion errors and non-hyperbolic moveout. A single anisotropy parameter, Thomsen's , parameter, is sufficient to explain the difference between the small-offset normal-moveout velocity and vertical velocity, and to interpret the small-offset AVO response. The sign of this parameter is poorly understood, with both positive and negative values having been reported in the literature. , is sensitive to the compliance of the contact regions between clay particles and to the degree of disorder in the orientation of clay particles. If the ratio of the normal to shear compliance of the contact regions exceeds a critical value, the presence of these regions acts to increase ,, and a change in the sign of ,, from the negative values characteristic of clay minerals to the positive values commonly reported for shales, may occur. Misalignment of the clay particles can also lead to a positive value of ,. For transverse isotropy, the elastic anisotropy parameters can be written in terms of the coefficients W200 and W400 in an expansion of the clay-particle orientation distribution function in generalized Legendre functions. For a given value of W200, decreasing W400 leads to an increase in ,, while for fixed W400, , increases with increasing W200. Perfect alignment of clay particles with normals along the symmetry axis corresponds to the maximum values of W200 and W400, given by and . A comparison of the predictions of the theory with laboratory measurements shows that most shales lie in a region of the (W200, W400)-plane defined by W400/W200,Wmax400/Wmax200. [source] THE NATURE AND ORIGIN OF PETROLEUM IN THE CHAIWOPU SUB-BASIN (JUNGGAR BASIN), NW CHINAJOURNAL OF PETROLEUM GEOLOGY, Issue 2 2000H. P. Huang The Chaiwopu Sub-basin is a minor extension of the Junggar Basin, hW China, and covers an area of about 2,500 sq. km. It is bounded to the east and north by the Bogda Shan and to the south by the Tian Shan ("Shan" meaning "mountains" in Chinese). Four wells have been drilled in the sub-basin; condensate and gas have been produced in noncommercial quantities at one of the wells (Well C), but the other three wells were dry. In this paper, I investigate the nature and origin of the petroleum at Well C. Three of the four wells in the Chaiwopu Sub-basin penetrated the Upper Permian Lucaogou Formation. Previous studies in the Junggar Basin have established that laminated lacustrine mudstones assigned to this formation comprise a very thick high quality source rock. However, the analysis of cores from wells in the sub-basin shows that the Lucaogou Formation is composed here of shallow lacustrine, fluvial and alluvial deposits which have very low petroleum generation potential. Overlying sediments (Upper Permian, Triassic and younger strata) likewise have little source potential. Around 1,000 m of Upper Permian laminated oil shales crop out at Dalongkou and Tianchi on the northern side of the Bogda Shan. On the southern side of the Bogda Shan, however, only 30 m of Upper Permian oil shales occur at Guodikong. Shales and oil seeps from these locations were analysed using standard organic-geochemical techniques. The physical properties of the petroleum present at Well C, and its carbon isotope and biomarker characteristics, suggest that it has migrated over long distances from its source rock, although an alternative explanation for its origin is not precluded. Burial history modelling indicates that hydrocarbon generation and migration may have occurred before the uplift of the Bogda Shan in the Late Jurassic,Early Cretaceous, the orogenic episode which resulted in the diflerentiation of the Chaiwopu Sub-basinfrom the Junggar Basin. [source] Multiple Sources of Metals of Mineralization in Lower Cambrian Black Shales of South China: Evidence from Geochemical and Petrographic StudyRESOURCE GEOLOGY, Issue 1 2008Jan Pa Abstract Black shales of the Lower Cambrian Niutitang Formation in southern China (Huangjiawan mine, Zunyi region, northern part of the Guizhou Province) host regionally distributed stratiform polymetallic Ni-Mo-platinum group elements (PGE)-Au phosphate- and sulfide-rich ores. These are confined to a ,0.2-m thick ore horizon composed of mineralized bodies of algal onkolites, phosphate nodules, and sulfide and shale clasts in a mineralized phosphate- and organic matter-rich matrix. Compared to footwall and hanging wall shales, the ore bed is strongly enriched in Ni (up to 100-fold), As (up to 97-fold), Mo (up to 95-fold), Sb (up to 67-fold), Rh (up to 49-fold), Cu (up to 37-fold), Pd (up to 33-fold), Ru (up to 24-fold), Zn (up to 23-fold), Pt (up to 21-fold), Ir (up to 15-fold), Co (up to 14-fold), and Pb (up to 13-fold). Even footwall and hanging wall black shales are significantly enriched by Mo (21-fold) and Ni (12-fold) but depleted in Cr in comparison to average Cambrian black shale. Organic matter is represented by separate accumulations dispersed in the rock matrix or as biotic bitumen droplets and veinlets in ore clasts. Similar organic carbon (Corg) values in an ore bed and enclosing footwall and hanging wall shales of little mineralization indicate that metal accumulation was not controlled only by biogenic productivity and organic matter accumulation rate. Evaporitic conditions during sedimentation of the basal part of the Niutitang Formation were documented by an occurrence of preserved Ni-, V-, Cr-, and Cu-enriched phosphate-rich hardground with halite and anhydrite pseudomorphs on the paleosurface of the underlying Neoproterozoic carbonates. Neoproterozoic black shales of the Doushantuo Formation are characterized by increased metal concentrations. Comparison of metal abundances in both hardground and Doushantuo black shales indicate that black shales could have become a source of metal-rich hardground during weathering. The polymetallic Ni-Mo-PGE sulfide-rich ore bed is interpreted to represent a remnant of shallow-water hardground horizon rich in metals, which originated in a sediment-starved, semi-restricted, seawater environment. During the Early Cambrian transgression an influx of fresh seawater and intensive evaporation, together with the hydrothermal enrichment of seawater in a semi-restricted basin, resulted in the formation of dense metalliferous brines; co-precipitation of metals together with phosphates and sulfides occurred at or above the oxic,anoxic sediment interface. Metal-enriched hardground was disintegrated by the action of waves or bottom currents and deposited in a deeper part of the anoxic basin. Contemporaneously with the formation of a polymetallic Ni-Mo-PGE-Au sulfide ore bed, economic sedimentary exhalative (SEDEX)-type barite deposits were forming in a stratigraphically and geotectonically similar setting. The results of geochemical study at the Shang Gongtang SEDEX-type Ba deposit indicate that concentrations of Ag, As, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, Zn and other metals decrease from top of the barite body toward the hanging wall black shale. Lower Cambrian black shales of the Niutitang Formation above the barite body also display similar element abundances as Neoproterozoic black shales of the Doushantuo Formation, developed in the footwall of the barite body. But the geochemical composition of the sulfide layer is different from the Ni-Mo ore bed, showing only elevated Pb, Cu, Ni and Mo values. It is suggested that hydrothermal brines at Shang Gongtang might have leached metals from footwall Neoproterozoic sequences and became, after mixing with normal seawater, an additional source of Ag, Cr, Cu, Pb, Sb, Zn, Ni, PGE, V and other metals. [source] Octoradiate Spiral Organisms in the Ediacaran of South ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2008TANG Feng Abstract: Shales of the Ediacaran Doushantuo Formation of South China contain a new disc-shaped macrofossil, Eoandromeda octobrachiata, characterized by eight spiral arms that were probably housed within an outer membrane. Although the presence of eight radiating structures entails a resemblance to cnidarian octocorals as well as to ctenophores, direct homologies with these extant groups are unlikely. Instead we bring attention to the helicospiral morphology of newly reported embryos from the Doushantuo Formation, suggesting that the long-sought adults of the Ediacaran embryonic metazoans have finally been found. [source] Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow oceanGEOBIOLOGY, Issue 1 2007B. S. KAMBER ABSTRACT We report in situ secondary ion mass spectrometer sulphur isotope data for sedimentary pyrite from the 2.52 Ga Upper Campbellrand Subgroup, Transvaal, South Africa. The analysed sedimentary rocks represent a transition in depositional environment from very shallow to deeper water, with strong sedimentological, facies distribution and geochemical evidence for the presence of a shallow redox chemocline. Data were obtained directly in thin section in order to preserve petrographic context. They reveal a very large extent of isotopic fractionation both in mass-independent (MIF) and in mass-dependent fractionation (MDF) on unprecedentedly small scale. In the shallow-water microbical carbonates, three types of pyrite were identified. The texturally oldest pyrite is found as small, isotopically little fractionated grains in the microbial mats. Large (several mm) spheroidal pyrite concretions, which postdate the mat pyrite, record strong evidence for an origin by bacterial sulphate reduction. Rare pyrite surrounding late fenestral calcite is inferred to have formed from recycled bacterial pyrite on account of the slope of its correlated MIF and MDF array. This latter type of pyrite was also found in an interbedded black shale and a carbonate laminite. In a deeper water chert, pyrite with very heavy sulphur indicates partial to almost complete sulphate reduction across a chemocline whose existence has been inferred independently. The combined picture from all the studied samples is that of a sulphate availability-limited environment, in which sulphur was cycled between reservoirs according to changing redox conditions established across the chemocline. Cycling apparently reduced the extent of recorded sulphur isotope fractionation relative to what is expected from projection in the correlated MIF and MDF arrays. This is consistent with regionally relatively high free oxygen concentrations in the shallow water, permitting locally strong MDF. Our new observations add to the growing evidence for a complex, fluctuating evolution of free atmospheric oxygen between c. 2.7 Ga and 2.3 Ga. [source] Lower Carboniferous peritidal carbonates and associated evaporites adjacent to the Leinster Massif, southeast Irish MidlandsGEOLOGICAL JOURNAL, Issue 2 2005Zsolt R. Nagy Abstract Analysis of a 275,m-thick section in the Milford Borehole, GSI-91-25, from County Carlow, Ireland, has revealed an unusual sequence of shallow subtidal, peritidal and sabkha facies in rocks of mid?-late Chadian to late Holkerian (Viséan, Lower Carboniferous) age. Sedimentation occurred on an inner ramp setting, adjacent to the Leinster Massif. The lower part of the sequence (late Chadian age) above the basal subtidal bioclastic unit is dominated by oolite sand facies associations. These include a lower regressive dolomitized, oolitic peloidal mobile shoal, and an upper, probably transgressive, backshoal oolite sand. A 68,m-thick, well-developed peritidal sequence is present between the oolitic intervals. These rocks consist of alternating stromatolitic fenestral mudstone, dolomite and organic shale, with evaporite pseudomorphs and subaerial exposure horizons containing pedogenic features. In the succeeding Arundian,Holkerian strata, transgressive,regressive carbonate units are recognized. These comprise high-energy, backshoal subtidal cycles of argillaceous skeletal packstones, bioclastic grainstones with minor oolites and algal wackestones to grainstones and infrequent algal stromatolite horizons. The study recognizes for the first time the peritidal and sabkha deposits in Chadian rocks adjacent to the Leinster Massif in the eastern Irish Midlands. These strata appear to be coeval with similar evaporite-bearing rocks in County Wexford that are developed on the southern margin of this landmass, and similar depositional facies exist further to the east in the South Wales Platform, south of St. George's Land, and in Belgium, south of the Brabant Massif. The presence of evaporites in the peritidal facies suggests that dense brines may have formed adjacent to the Leinster Massif. These fluids may have been involved in regional dolomitization of Chadian and possibly underlying Courceyan strata. They may also have been a source of high salinity fluids associated with nearby base-metal sulphide deposits. Copyright © 2005 John Wiley & Sons, Ltd. [source] Determining the dilation factor in 4D monitoring of compacting reservoirs by rock-physics modelsGEOPHYSICAL PROSPECTING, Issue 6 2007José M. Carcione ABSTRACT Hydrocarbon depletion and fluid injection cause compaction and stretching of the reservoir and overburden layers. 4D prestack seismic data can be used to detect these changes because compaction/stretching causes changes in traveltimes and seismic velocities. We show that, by using two different petro-elastic models at varying effective pressures, a good approximation is to assume that the fractional changes in layer thickness, ,L/L, and seismic velocity, ,v/v, are related by a linear function of ,L/L. The slope of this function (the dilation factor, ,= (,v/v)/(,L/L)) is negative and its absolute value generally decreases (shale, low porosity) or increases (sandstone, high porosity) with increasing layer thickness and decreasing effective pressure. The analysis is mainly performed for isotropic deformations. The dilation factor for uniaxial deformations is smaller in absolute value. The dilation factor, which can be calculated from time-lapse data, can be used to predict reservoir compaction/stretching as a function of depth and surface subsidence. [source] Hydrogeochemistry of seepage water collected within the Youngcheon diversion tunnel, Korea: source and evolution of SO4 -rich groundwater in sedimentary terrainHYDROLOGICAL PROCESSES, Issue 9 2001Gi-Tak Chae Abstract In the Youngcheon Diversion Tunnel area, South Korea, 46 samples of tunnel seepage water (TSW) and borehole groundwater were collected from areas with sedimentary rocks (mainly sandstone and shale) and were examined for hydrogeochemical characteristics. The measured SO4 concentrations range widely from 7·7 to 942·0 mg/l, and exceed the Korean Drinking Water Standard (200 mg/l) in about half the samples. The TDS (total dissolved solid) content generally is high (171,1461 mg/l) from more shale-rich formations and also reflects varying degrees of water,rock interaction. The water is classified into three groups: Ca SO4 type (61% of the samples collected), Ca SO4 HCO3 type (15%) and Ca HCO3 type (24%). The Ca HCO3 type water (mean concentrations=369 mg/l Ca, 148 mg/l HCO3 and 23 mg/l SO4) reflected the simple reaction between CO2 -recharged water and calcite, whereas the more SO4 -rich nature of Ca SO4 type water (mean concentrations=153 mg/l Ca, 66 mg/l HCO3 and 416 mg/l SO4) reflected the oxidation of pyrite in sedimentary rocks and fracture zones. Pyrite oxidation resulted in precipitation of amorphous iron hydroxide locally within the tunnel as well as in high concentrations of Ca (mean 153 mg/l) and Na (mean 49 mg/l) for TSW, and is associated with calcite dissolution resulting in pH buffering. The pyrite oxidation required for the formation of Ca SO4 type water was enhanced by the diffusion of oxygenated air through the fractures related to the tunnel's construction. The subsequent outgassing of CO2 into the tunnel resulted in precipitation of iron-bearing carbonate. Copyright © 2001 John Wiley & Sons, Ltd. [source] The Mandel,Cryer effect in chemoporoelasticityINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 14 2010A. P. Bunger Abstract Chemoporoelastic theory is an extension of classical Biot poroelasticity that accounts for coupling with the presence and the transport of ions in the pore fluid. The impact of this extra level of coupling can be both substantial and complex. This paper relies on the two variations of Mandel's classical problem, which has become a canonical illustration of the complexity that poromechanical coupling can bring to an otherwise straightforward system. To this end, solutions for a chemoporoelastic shale cylinder and a spherical shale ball are derived. These solutions are then used to demonstrate that chemoporoelastic coupling leads to a coupled pore pressure response that is not only non-monotonic, as in Mandel's classical case, but also demonstrates the consequences of the semi-permeable membrane-like nature of the shale and of the problem's two diffusion-related timescales. This paper concludes with a discussion of the implications of these results for experimentation and modeling of so-called reactive shales using chemoporoelastic theory. Copyright © 2009 John Wiley & Sons, Ltd. [source] The effect of particle shape and grain-scale properties of shale: A micromechanics approachINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2010J. A. Ortega Abstract Traditional approaches for modeling the anisotropic elasticity response of the highly heterogeneous clay fabric in shale have mainly resorted to geometric factors such as definitions of particles shapes and orientations. However, predictive models based on these approaches have been mostly validated using macroscopic elasticity data. The recent implementation of instrumented indentation aimed at probing nano-scale mechanical behaviors has provided a new context for characterizing and modeling the anisotropy of the porous clay in shale. Nanoindentation experimental data revealed the significant contribution of the intrinsic anisotropy of the solid clay to the measured elastic response. In this investigation, we evaluate both the effects of geometric factors and of the intrinsic anisotropic elasticity of the solid clay phase on the observed anisotropy of shale at multiple length scales through the development of a comprehensive theoretical micromechanics approach. It was found that among various combinations of these sources of anisotropy, the elastic response of the clay fabric represented as a granular ensemble of aligned effective clay particles with spherical morphology and anisotropic elasticity compares satisfactorily to nanoindentation and ultrasonic pulse velocity measurements at nano- and macroscopic length scales, respectively. Other combinations of sources of anisotropy could yield comparable predictions, particularly at macroscopic scales, at the expense of requiring additional experimental data to characterize the morphology and orientations of particles. Copyright © 2009 John Wiley & Sons, Ltd. [source] OIL-PRONE LOWER CARBONIFEROUS COALS IN THE NORWEGIAN BARENTS SEA: IMPLICATIONS FOR A PALAEOZOIC PETROLEUM SYSTEMJOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010J.H. Van Koeverden In this study, we assess the oil generation potential of Lower Carboniferous, liptinite-rich coals in the Tettegras Formation on the Finnmark Platform, southern Norwegian Barents Sea. Oil from these coals has been expelled into intercalated sandstones. The coals may have contributed to petroleum recorded in well 7128/4,1 on the Finnmark Platform and may constitute a new Palaeozoic source rock in the Barents Sea. The Tettegras Formation coals contain up to 80 vol.% liptinite (mineral matter free base) and have low oxygen indices. Hydrogen indices up to 367 mg HC/g TOC indicate liquid hydrocarbon potential. In wells 7128/4,1 and 7128/6,1, the coals have vitrinite reflectance Ro= 0.75,0.85 %. Compared to shale and carbonate source rocks, expulsion from coal in general begins at higher maturities (Ro= 0.8,0.9% and Tmax= 444,453°C). Thus, the coals in the wells are mostly immature with regard to oil expulsion. The oil in well 7128/4,1 most likely originates from a more mature part of the Tettegras Formation in the deeper northern part of the Finnmark Platform. Wide variations in biomarker facies parameters and ,13C isotope values indicate a heterogeneous paralic depositional setting. The preferential retention by coal strata of naphthenes (e.g. terpanes and steranes) and aromatic compounds, compared to n-alkanes and acyclic isoprenoids, results in a terrigenous and waxy oil. This oil however contains marine biomarkers derived from the intercalated shales and siltstones. It is therefore important to consider the entire coal-bearing sequence, including the intercalated shales, in terms of source rock potential. Coals of similar age occur on Svalbard and Bjørnøya. The results of this study therefore suggest that a Lower Carboniferous coaly source rock may extend over large areas of the Norwegian Barents Sea. This source rock is mature in areas where the otherwise prolific Upper Jurassic marine shales are either immature or missing and may constitute a new Palaeozoic coal-sourced petroleum system in the Barents Sea. [source] LOWER SILURIAN "HOT SHALES" IN JORDAN: A NEW DEPOSITIONAL MODELJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2009D. K. Loydell Data are presented from the Batra Formation (also known as the Mudawwara Shale Formation) of a core from well BG-14 in the Batna el Ghoul area, southern Jordan, which enable a new depositional model to be proposed for the middle Rhuddanian (lower Llandovery, Silurian) "hot shale" which may be applicable to other Arabian and North African "hot shales" of similar stratigraphical age. This "hot shale" probably results from rapid early burial of organic carbon associated with a minor regression during which anoxic bottom conditions were maintained for most, but not all, of the time. Evidence for regression comes from (1) increased sediment grain size within the "hot shale" by comparison with underlying shales; (2) palynological changes including a decrease in acritarch species diversity; an increase in the relative abundance of sphaeromorphs, veryhachiids with three processes and acritarchs with short, simple processes; and a decrease in the relative abundance of acanthomorphs; (3) a positive ,13Corg excursion (other Late Ordovician and Silurian positive ,13Corg excursions occur during regressions); and (4) very brief intervals of oxygenation (associated with sediment influx) reflected in the preservation of graptolites as three-dimensional pyrite internal moulds, rather than as flattened periderm. The minor regression reflects a eustatic sea-level fall, evidence for which has recently been presented from several regions, including Arctic Canada, Bohemia and Scotland. The BG-14 "hot shale" is shown to be thicker than estimated in previous studies. Previous TOC measurements from the upper part of the "hot shale" were affected by the weathering of overlying strata in the BG-14 core. ICP-MS measurements show that uranium content is high in these weathered levels, extending the stratigraphical extent of the "hot shale" interval into the middle Rhuddanian. Depositional models such as that presented here rely on a robust biostratigraphical framework; in the Ordovician and Silurian of Arabia and North Africa, this can be provided by graptolites and chitinozoans. [source] |