Shadow Map (shadow + map)

Distribution by Scientific Domains


Selected Abstracts


Hierarchical Image-Space Radiosity for Interactive Global Illumination

COMPUTER GRAPHICS FORUM, Issue 4 2009
Greg Nichols
Abstract We introduce image-space radiosity and a hierarchical variant as a method for interactively approximating diffuse indirect illumination in fully dynamic scenes. As oft observed, diffuse indirect illumination contains mainly low-frequency details that do not require independent computations at every pixel. Prior work leverages this to reduce computation costs by clustering and caching samples in world or object space. This often involves scene preprocessing, complex data structures for caching, or wasted computations outside the view frustum. We instead propose clustering computations in image space, allowing the use of cheap hardware mipmapping and implicit quadtrees to allow coarser illumination computations. We build on a recently introduced multiresolution splatting technique combined with an image-space lightcut algorithm to intelligently choose virtual point lights for an interactive, one-bounce instant radiosity solution. Intelligently selecting point lights from our reflective shadow map enables temporally coherent illumination similar to results using more than 4096 regularly-sampled VPLs. [source]


High-Quality Adaptive Soft Shadow Mapping

COMPUTER GRAPHICS FORUM, Issue 3 2007
Gaël Guennebaud
Abstract The recent soft shadow mapping technique [GBP06] allows the rendering in real-time of convincing soft shadows on complex and dynamic scenes using a single shadow map. While attractive, this method suffers from shadow overestimation and becomes both expensive and approximate when dealing with large penumbrae. This paper proposes new solutions removing these limitations and hence providing an efficient and practical technique for soft shadow generation. First, we propose a new visibility computation procedure based on the detection of occluder contours, that is more accurate and faster while reducing aliasing. Secondly, we present a shadow map multi-resolution strategy keeping the computation complexity almost independent on the light size while maintaining high-quality rendering. Finally, we propose a view-dependent adaptive strategy, that automatically reduces the screen resolution in the region of large penumbrae, thus allowing us to keep very high frame rates in any situation. [source]


Generalized minimum-norm perspective shadow maps

COMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 5 2008
Fan Zhang
Abstract Shadow mapping has been extensively used for real-time shadow rendering in 3D computer games, though it suffers from the inherent aliasing problems due to its image-based nature. This paper presents an enhanced variant of light space perspective shadow maps to optimize perspective aliasing distribution in possible general cases where the light and view directions are not orthogonal. To be mathematically sound, the generalized representation of perspective aliasing errors has been derived in detail. Our experiments have shown the enhanced shadow quality using our algorithm in dynamic scenes. Copyright © 2008 John Wiley & Sons, Ltd. [source]