Shelf Waters (shelf + water)

Distribution by Scientific Domains


Selected Abstracts


Particulate Matter in the Ross Sea: a Spreading Model

MARINE ECOLOGY, Issue 2002
Sergio Tucci
Abstract. Within the framework of the C.L.I.M.A. Project, a part of the Italian Research Program in Antarctica, the Total Particulate Matter (TPM) was used as a natural marker to characterise the water masses. The dynamics of TPM was estimated by using a numerical model capable of following the evolution of the basin during the ice absence in summer. The first numerical simulation, with horizontally constant initial conditions and the absence of TPM source areas, merely reveals how TPM passive dispersion is strongly influenced by the Ross Ice Shelf and bathymetry. The second simulation, with TPM concentration horizontally variable and vertically decreasing layers, shows a dynamic evolution of TPM that is in agreement with experimental data. On the surface, in correspondence with the shelf-break, an out-flowing flux with particulate matter contribution coming from Ross Ice Shelf is recognised. The TPM concentration may be linked to the ice melting due to the Antarctic Surface Water, with production of Shallow Ice Shelf Water. The numerical model produces, near the Drygalski area, two cells with high concentration. This numerical evolution is confirmed by the 1990 data (Spezie et al, 1993) that clearly show these two areas and their correlations with the Drygalski contributions (the inner area) and with the thermo-haline front (the external one). This condition is evident in the 1994-1995 data too (Bu-dillon et al, 1999). In this case the authors observed that the Circumpolar Deep Water penetrates onto the shelf at about 174°E; then, modifying its properties, it follows a southward path for about 200 km. The Antarctic Shelf Front (ASF) separates CDW from the colder shelf water with a high concentration of suspended matter. At the 300-meter level, the diffusion of the particulate matter directed under the RIS, towards the continental shelf, seems to be an important feature. Very high TPM values are also present in the deep water in the area off the Drygalski Glacier; this evolution agrees with the ,400 m data collected during the 1990,1991 cruise (Spezie et al., 1993). [source]


Distribution of larval fishes among water masses in Onslow Bay, North Carolina: implications for cross-shelf exchange

FISHERIES OCEANOGRAPHY, Issue 6 2005
A. M. QUATTRINI
Abstract The Gulf Stream (GS) is a major oceanographic feature with potential to influence the recruitment of larval fishes to continental shelf habitats in the southeastern United States. To test the hypothesis that the GS is a source of certain larval fishes to Onslow Bay, North Carolina, we (i) classified water masses as shelf, GS, GS front (GSF), or GS/shelf mixture (GS/S); (ii) compared larval fish assemblages and concentrations among these water masses; and (iii) compared length,frequency distributions and length,concentration relationships of indicator and commercially important taxa among water masses. A total of 21,222 larvae were collected with bongo and neuston nets from April 2000 to December 2001. Non-metric multidimensional scaling analyses revealed distinct larval assemblages associated with different water masses. For bongo catches, bothids were abundant in all water masses, gobiids, callionymids, and labrids were abundant in shelf waters, and myctophids and scombrids were abundant in the GS. For neuston catches, carangids dominated in GS/S, GSF, and GS waters, whereas triglids were abundant in shelf water. Larval concentrations in neuston catches were lower in shelf waters and higher in GS and GSF waters. Concentrations of most taxa in bongo catches were low in the GS and higher in shelf waters. We used trends in myctophid (offshore/GS) and gobiid (shelf) length,concentration data as indicators of the sources of commercially important serranids. Length distributions and concentrations of larval indicator taxa suggested local, shelf spawning, and transport of larvae from offshore. [source]


Springtime ichthyoplankton of the slope region off the north-eastern United States of America: larval assemblages, relation to hydrography and implications for larval transport

FISHERIES OCEANOGRAPHY, Issue 2 2001
Jonathan A. Hare
Larval transport in the slope region off north-eastern North America influences recruitment to juvenile habitats for a variety of fishes that inhabit the continental shelf. In this study, collections of larval fishes were made during springtime over the continental slope to provide insights into larval distributions and transport. Ichthyoplankton composition and distribution mirrored the physical complexity of the region. Three larval fish assemblages were defined, each with different water mass distributions. A Gulf Stream assemblage was found predominantly in the Gulf Stream and associated with filaments of discharged Gulf Stream water in the Slope Sea. Larvae of this assemblage originated from oceanic and shelf regions south of Cape Hatteras. Several members of this assemblage utilize habitats in the Middle Atlantic Bight (MAB) as juveniles (Pomatomus saltatrix, Peprilus triacanthus) and other members of the assemblage may share this life cycle (Mugil curema, Sphyraena borealis, Urophycis regia). A Slope Sea assemblage was found in all water masses, and was composed of epi- and mesopelagic fish larvae, as well as larvae of benthic shelf/slope residents. Larvae of one member of this assemblage (U. tenuis) are spawned in the Slope Sea but cross the shelf-slope front and use nearshore habitats for juvenile nurseries. A MAB shelf assemblage was found in MAB shelf water and was composed of larvae that were spawned on the shelf. Some of these species may cross into the Slope Sea before returning to MAB shelf habitats (e.g. Enchelyopus cimbrius, Glyptocephalus cynoglossus). Previous studies have examined the effect of warm-core rings on larval distributions, but this study identifies the importance of smaller-scale features of the MAB shelf/slope front and of filaments associated with Gulf Stream meanders. In combination with these advective processes, the dynamic nature of larval distributions in the Slope Sea appears to be influenced, to varying degrees, by both vertical and horizontal behaviour of larvae and pelagic juveniles themselves. [source]


Particulate Matter in the Ross Sea: a Spreading Model

MARINE ECOLOGY, Issue 2002
Sergio Tucci
Abstract. Within the framework of the C.L.I.M.A. Project, a part of the Italian Research Program in Antarctica, the Total Particulate Matter (TPM) was used as a natural marker to characterise the water masses. The dynamics of TPM was estimated by using a numerical model capable of following the evolution of the basin during the ice absence in summer. The first numerical simulation, with horizontally constant initial conditions and the absence of TPM source areas, merely reveals how TPM passive dispersion is strongly influenced by the Ross Ice Shelf and bathymetry. The second simulation, with TPM concentration horizontally variable and vertically decreasing layers, shows a dynamic evolution of TPM that is in agreement with experimental data. On the surface, in correspondence with the shelf-break, an out-flowing flux with particulate matter contribution coming from Ross Ice Shelf is recognised. The TPM concentration may be linked to the ice melting due to the Antarctic Surface Water, with production of Shallow Ice Shelf Water. The numerical model produces, near the Drygalski area, two cells with high concentration. This numerical evolution is confirmed by the 1990 data (Spezie et al, 1993) that clearly show these two areas and their correlations with the Drygalski contributions (the inner area) and with the thermo-haline front (the external one). This condition is evident in the 1994-1995 data too (Bu-dillon et al, 1999). In this case the authors observed that the Circumpolar Deep Water penetrates onto the shelf at about 174°E; then, modifying its properties, it follows a southward path for about 200 km. The Antarctic Shelf Front (ASF) separates CDW from the colder shelf water with a high concentration of suspended matter. At the 300-meter level, the diffusion of the particulate matter directed under the RIS, towards the continental shelf, seems to be an important feature. Very high TPM values are also present in the deep water in the area off the Drygalski Glacier; this evolution agrees with the ,400 m data collected during the 1990,1991 cruise (Spezie et al., 1993). [source]


Diversity and distribution of pigmented heterotrophic bacteria in marine environments

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
Hailian Du
Abstract A systematic investigation of marine pigmented heterotrophic bacteria (PHB) based on the cultivation method and sequencing analysis of 16S rRNA genes was conducted in Chinese coastal and shelf waters and the Pacific Ocean. Both the abundance of PHB and the ratio of PHB to CFU decreased along trophic gradients from coastal to oceanic waters, with the highest values of 9.9 × 103 cell mL,1 and 39.6%, respectively, in the Yangtze River Estuary. In contrast to the total heterotrophic bacteria (TB) and CFU, which were present in the whole water column, PHB were primarily confined to the euphotic zone, with the highest abundance of PHB and ratio of PHB to CFU occurring in surface water. In total, 247 pigmented isolates were obtained during this study, and the phylogenetic analysis showed a wide genetic diversity covering 25 genera of six phylogenetic classes: Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacilli, Flavobacteria and Sphingobacteria. PHB belonging to Alphaproteobacteria, Flavobacteria and Sphingobacteria were obtained mainly from the South China Sea and East China Sea; PHB from the Pacific Ocean water were predominantly affiliated with Gammaproteobacteria, and most isolates from the Yangtze River Estuary fell into the classes Actinobacteria and Bacilli. The isolates exhibited various colours (e.g. golden, yellow, red, pink and orange), with genus or species specificity. Furthermore, the pigment of PHB cells absorbed light mainly in the wavelength range between 450 and 550 nm. In conclusion, our work has revealed that PHB with broad genetic diversity are widely distributed in the marine environment, and may account for up to 39.6% of culturable bacteria, equivalent to 1.4% of the total microbial community. This value might even be underestimated because it is probable that not all pigmented bacteria were isolated. Their abundance and genetic distribution are heavily influenced by environmental properties, such as light and nutrition, suggesting that they have important roles in the marine ecosystem, especially in the absorption of visible light. [source]


Larval fish assemblages along the south-eastern Australian shelf: linking mesoscale non-depth-discriminate structure and water masses

FISHERIES OCEANOGRAPHY, Issue 4 2008
JOHN P. KEANE
Abstract We present findings of the first mesoscale study linking larval fish assemblages and water masses along shelf waters off south-eastern Australia (southern Queensland-New South Wales), based on vertical, non-depth discriminate data from surveys in October 2002 and 2003 (spring) and July 2004 (winter). Clustering and ordination were employed to discriminate between larval assemblages and, for the first time, to define water masses from water column temperature frequencies. Surveys yielded 18 128 larval fishes comprising 143 taxa from 96 identifiable families, with small pelagics accounting for 53% of the total. Three major recurrent larval assemblages were identified during the study, each of which matched one of three water masses, namely East Australian Current to the north (EAC; 20.5,23.4°C), Tasman Sea to the south (TAS; 14.8,17.5°C), and mixed EAC,TAS water in between (MIX; 18.3,19.9°C). All three assemblages were present in spring, whereas only EAC and MIX occurred in the more northerly constrained winter survey. Furthermore, boundaries between the EAC, MIX and TAS assemblages were found to be dynamic, with locations shifting temporally and spatially depending on EAC extent. Assemblage composition differed significantly between water masses across surveys, with EAC,TAS being most dissimilar. Such contrast was due to the presence of tropical/temperate taxa in EAC, primarily temperate-associated taxa in TAS, and a combination of EAC,TAS taxa within MIX consistent with the convergence of both waters. Results highlight the strength of employing larval assemblages as indicators of water masses, particularly in view of the potential effect of climate change on spawning habitats of shelf fishes. [source]


Cohort splitting in bluefish, Pomatomus saltatrix, in the US mid-Atlantic Bight

FISHERIES OCEANOGRAPHY, Issue 3 2008
JODY L. CALLIHAN
Abstract Atlantic bluefish exhibit cohort splitting, whereby two modes of juvenile recruits originate from spatially distinct spring- and summer-spawning regions in US Atlantic shelf waters. We evaluate the pattern of cohort splitting in a transition area (US Maryland coastal region and Chesapeake Bay) between the two major spawning regions. Spring and summer cohorts were differentially represented in Maryland estuarine (Chesapeake Bay) and coastal waters. The spring cohort was dominant in Chesapeake Bay, but was not well represented in the ocean environment, and the converse true for the summer cohort. We hypothesized that ocean temperatures control the bimodal spawning behavior and extent of cohort splitting. As evidence, we observed an intervening early summer cohort produced in years when shelf temperatures during early summer were suitably warm for spawning. In most years however, two dominant cohorts were evident. We propose that vernal warming dynamics in the mid-Atlantic Bight influence spawning behavior and the resultant bimodal pattern of seasonal juvenile cohort production commonly observed along the US east coast. [source]


Larval fish assemblages and water mass structure off the oligotrophic south-western Australian coast

FISHERIES OCEANOGRAPHY, Issue 1 2008
B. A. MUHLING
Abstract Larval fish assemblages were sampled using replicated oblique bongo net tows along a five-station transect extending from inshore (18 m depth) to offshore waters (1000 m depth) off temperate south-western Australia. A total of 148 taxa from 93 teleost families were identified. Larvae of Gobiidae and Blenniidae were abundant inshore, while larvae of pelagic and reef-dwelling families, such as Clupeidae, Engraulidae, Carangidae and Labridae were common in continental shelf waters. Larvae of oceanic families, particularly Myctophidae, Phosichthyidae and Gonostomatidae, dominated offshore assemblages. Multivariate statistical analyses revealed larval fish assemblages to have a strong temporal and spatial structure. Assemblages were distinct among seasons, and among inshore, continental shelf and offshore sampling stations. Inshore larval fish assemblages were the most seasonal, in terms of species composition and abundance, with offshore assemblages the least seasonal. However, larval fish assemblages were most closely correlated to water mass, with species distributions reflecting both cross-shelf and along-shore oceanographic processes and events. Similarity profile (SIMPROF) analysis suggested the presence of twelve distinct larval fish assemblages, largely delineated by water depth and season. The strength and position of the warm, southward flowing Leeuwin Current, and of the cool, seasonal, northward flowing Capes Current, were shown to drive much of the variability in the marine environment, and thus larval fish assemblages. [source]


Distribution of larval fishes among water masses in Onslow Bay, North Carolina: implications for cross-shelf exchange

FISHERIES OCEANOGRAPHY, Issue 6 2005
A. M. QUATTRINI
Abstract The Gulf Stream (GS) is a major oceanographic feature with potential to influence the recruitment of larval fishes to continental shelf habitats in the southeastern United States. To test the hypothesis that the GS is a source of certain larval fishes to Onslow Bay, North Carolina, we (i) classified water masses as shelf, GS, GS front (GSF), or GS/shelf mixture (GS/S); (ii) compared larval fish assemblages and concentrations among these water masses; and (iii) compared length,frequency distributions and length,concentration relationships of indicator and commercially important taxa among water masses. A total of 21,222 larvae were collected with bongo and neuston nets from April 2000 to December 2001. Non-metric multidimensional scaling analyses revealed distinct larval assemblages associated with different water masses. For bongo catches, bothids were abundant in all water masses, gobiids, callionymids, and labrids were abundant in shelf waters, and myctophids and scombrids were abundant in the GS. For neuston catches, carangids dominated in GS/S, GSF, and GS waters, whereas triglids were abundant in shelf water. Larval concentrations in neuston catches were lower in shelf waters and higher in GS and GSF waters. Concentrations of most taxa in bongo catches were low in the GS and higher in shelf waters. We used trends in myctophid (offshore/GS) and gobiid (shelf) length,concentration data as indicators of the sources of commercially important serranids. Length distributions and concentrations of larval indicator taxa suggested local, shelf spawning, and transport of larvae from offshore. [source]


Relative importance of gulf and shelf waters for spawning and recruitment of Australian anchovy, Engraulis australis, in South Australia

FISHERIES OCEANOGRAPHY, Issue 5 2004
W. F. Dimmlich
Abstract Gonosomatic indices and egg and larval densities observed from 1986 to 2001 suggest that the peak spawning season of the Australian anchovy (Engraulis australis) in South Australia occurs during January to March (summer and autumn). This coincides with the spawning season of sardine (Sardinops sagax) and the period when productivity in shelf waters is enhanced by upwelling. Anchovy eggs were abundant throughout gulf and shelf waters, but the highest densities occurred in the northern parts of Spencer Gulf and Gulf St Vincent where sea surface temperatures (SST) were 24,26°C. In contrast, larvae >10 mm total length (TL) were found mainly in shelf waters near upwelling zones where SSTs were relatively low (<20°C) and levels of chlorophyll a (chl a) relatively high. Larvae >15 mm TL were collected only from shelf waters near upwelling zones. The high levels of larval abundance in the upwelling zones may reflect higher levels of recruitment to later stages in these areas compared with the gulfs. The sardine spawns mainly in shelf waters; few eggs and no larvae were collected from the northern gulfs. The abundance of anchovy eggs and larvae in shelf waters increased when sardine abundance was reduced by large-scale mortality events, and decreased as the sardine numbers subsequently recovered. We hypothesize that the upwelling zones provide optimal conditions for the survival of larval anchovy in South Australia, but that anchovy can only utilize these zones effectively when the sardine population is low. At other times, northern gulf waters of South Australia may provide a refuge for the anchovy that the sardine cannot utilize. [source]


Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean)

FISHERIES OCEANOGRAPHY, Issue 2 2004
J. Lloret
Abstract Time series analyses (Box,Jenkins models) were used to study the influence of river runoff and wind mixing index on the productivity of the two most abundant species of small pelagic fish exploited in waters surrounding the Ebre (Ebro) River continental shelf (north-western Mediterranean): anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus). River flow and wind were selected because they are known to enhance fertilization and local planktonic production, thus being crucial for the survival of fish larvae. Time series of the two environmental variables and landings of the two species were analysed to extract the trend and seasonality. All series displayed important seasonal and interannual fluctuations. In the long term, landings of anchovy declined while those of sardine increased. At the seasonal scale, landings of anchovy peaked during spring/summer while those of sardine peaked during spring and autumn. Seasonality in landings of anchovy was stronger than in sardine. Concerning the environmental series, monthly average Ebre runoff showed a progressive decline from 1960 until the late 1980s, and the wind mixing index was highest during 1994,96. Within the annual cycle, the minimum river flow occurs from July to October and the wind mixing peaks in winter (December,April, excluding January). The results of the analyses showed a significant correlation between monthly landings of anchovy and freshwater input of the Ebre River during the spawning season of this species (April,August), with a time lag of 12 months. In contrast, monthly landings of sardine were significantly positively correlated with the wind mixing index during the spawning season of this species (November,March), with a lag of 18 months. The results provide evidence of the influence of riverine inputs and wind mixing on the productivity of small pelagic fish in the north-western Mediterranean. The time lags obtained in the relationships stress the importance of river runoff and wind mixing for the early stages of anchovy and sardine, respectively, and their impact on recruitment. [source]


Correlation between sea surface topography and bathymetry in shallow shelf waters in the Western Mediterranean

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2002
G. Rodríguez Velasco
Summary In this paper, gravimetric and altimetric data are used to assess an estimation of the sea surface topography in the Western Mediterranean Sea. This is a complex area from different points of view, due to the presence of several islands, coastal lines, shallow waters and a peculiar hydrologic equilibrium due to its proximity to the Atlantic water exchange area. First, a gravimetric geoid was computed using the least-squares collocation (LSC) procedure with the classical remove-restore technique. We also present a local mean sea surface generated from repeat ERS-1 altimeter data fitted to TOPEX. We chose this satellite because it offers a better spatial resolution than the TOPEX data. The time span used in the computations is one year. This is a useful interval for averaging out the regular seasonal variations, which are very large in this area. We present the comparisons between the gravimetric geoidal heights and the adjusted sea surface. This is a way to obtain a rough estimation of the sea surface topography (SST) since we also include the errors in the two surfaces and other oceanic signals. The differences obtained are physically reasonable with a mean of 17 cm and standard deviation (s.d.) of 39 cm. A significant similarity is observed between the features reproduced by these differences and the bathymetry in the area, suggesting some sort of correlation between both magnitudes for the studied region. If we accept such correlation, the SST may be described as a function of depth. This procedure lets us filter out the short wavelength part of the geoid from the first SST estimation. [source]


Spawning dynamics and biomass estimates of an anchovy Engraulis australis population in contrasting gulf and shelf environments

JOURNAL OF FISH BIOLOGY, Issue 7 2009
W. F. Dimmlich
The spawning biomass of Australian anchovy Engraulis australis in gulf and shelf waters of South Australia was compared using the daily egg production method (DEPM). The total survey area was 128 700 km2 with recorded spawning areas in gulf and shelf waters of 4898 and 44 618 km2, respectively. High egg densities in the warm, shallow gulf waters were produced by small, young (<1 year old) E. australis that spawned relatively small batches of eggs (c. 855) approximately every 3 days. In cooler, deeper shelf waters, where larger, older E. australis are found, lower egg densities occurred despite individuals producing much larger batches of eggs (c. 15 572) approximately every 7 days. In shelf waters, the highest densities were recorded at inshore sampling stations. Spawning appeared to peak between 0000 and 0100 hours. Females were more abundant than males in samples from both gulf and shelf waters with sex ratios of 0·61 and 0·56, respectively. The spawning biomass of E. australis in shelf waters was 101 522 t, whereas the estimate for gulf waters was 25 374 t. Due to the differences in mean size of the spawning females, however, c. 6 × 109E. australis were present in each region. The results support the hypothesis that variability in habitat conditions may directly influence E. australis reproduction. A large reserve of young fish in the relatively stable gulf environment may increase the resilience of the E. australis population in South Australia to unfavourable interannual changes in offshore environmental conditions. [source]


Deglacial seasonal and sub-seasonal diatom record from Palmer Deep, Antarctica,

JOURNAL OF QUATERNARY SCIENCE, Issue 5 2005
Eleanor J. Maddison
Abstract The Antarctic Peninsula is one of the most sensitive regions of Antarctica to climate change. Here, ecological and cryospheric systems respond rapidly to climate fluctuations. A 4.4,m thick laminated diatom ooze deposited during the last deglaciation is examined from a marine sediment core (ODP Site 1098) recovered from Basin I, Palmer Deep, western Antarctic Peninsula. This deglacial laminated interval was deposited directly over a glaciomarine diamict, hence during a globally recognised period of rapid climate change. The ultra-high-resolution deglacial record is analysed using SEM backscattered electron imagery and secondary electron imagery. Laminated to thinly bedded orange-brown diatom ooze (near monogeneric Hyalochaete Chaetoceros spp. resting spores) alternates with blue-grey terrigenous sediments (open water diatom species). These discrete laminae are interpreted as austral spring and summer signals respectively, with negligible winter deposition. Sub-seasonal sub-laminae are observed repeatedly through the summer laminae, suggesting variations in shelf waters throughout the summer. Tidal cycles, high storm intensities and/or intrusion of Circumpolar Deep Water onto the continental shelf introduced conditions which enhanced specific species productivity through the season. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Effects of Light Intensity and Salinity on Growth, Survival, and Whole-Body Osmolality of Larval Southern Flounder Paralichthys lethostigma

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2003
James P. Henne
The southern flounder Paralichthys lethosligma is a high-valued flatfish found in estuarine and shelf waters of the south Atlantic and Gulf coasts of the United States. Wide temperature and salinity tolerances exhibited by juveniles and adults make it a versatile new candidate for commercial culture, and studies are underway in the southeastern U.S. to develop hatchery methods for this species. The objectives of this study were to establish illumination and salinity conditions that optimize growth and survival of larval southern flounder reared through the yolk-sac and first feeding stages to 15-d post-hatching (15 dph). Early embryos were stocked into black 15-L tanks under light intensities of 5, 50, 100, and 1,000 Ix and at salinities of 24 and 34 ppt in a 4 ± 2 factorial design. Significant (P 0.05) effects of both light intensity and salinity on growth and survival were obtained, with no interaction between these effects. On 11 dph and 15 dph, growth was generally maximized at the intermediate light intensities (50 and 100 Ix) and minimized at the extremes (5 and 1,000 Ix). By 15 dph, growth was higher at 34 ppt than at 24 ppt. Survival to 15 dph showed trends similar to those of growth. Survival was higher at 100 Ix (avg. = 46%, range = 41,54%) than at 5 Ix (avg. = 11%, range = 6,17%) and higher at 34 ppt (avg. = 43%, range = 3145%) than at 24 ppt (avg. = 17%, range = 8,38%). Whole-body osmolality (mOsmol/kg) was significantly lower in larvae reared at 24 ppt (avg. = 304, range = 285,325) through 11 dph than in larvae reared at 34 ppt (avg. = 343, range = 296,405). Larvae reared under the extreme light intensity treatments (5 and 1,000 Ix) at 34 ppt appeared to exhibit osmoregulatory stress, particularly on 11 dph, when a marked increase in whole-body osmolality was observed. The mid-intensity treatments (50 and 100 Ix) at 34 ppt optimized growth and survival of larval southern flounder in this study; and elicited the most stable osmotic response. These conditions appear to be consistent with those that southern flounder larvae encounter in nature during this early developmental period. [source]