Home About us Contact | |||
Sheath Cells (sheath + cell)
Kinds of Sheath Cells Selected AbstractsUltrastructural and immunocytochemical observations of the nervous systems of three macrodasyidan gastrotrichsACTA ZOOLOGICA, Issue 3 2003R. Hochberg Abstract The nervous systems of three macrodasyidan gastrotrichs, Dactylopodola baltica, Macrodasys caudatus and Dolichodasys elongatus, were investigated using immunocytochemistry and electron microscopy. Labelling of neural structures against serotonin revealed the presence of two pairs of cerebral cells, a dorsal cerebral connective, and paired ventral nerve cords in D. baltica. In M. caudatus and D. elongatus serotonin immunoreactivity was present in a single pair of dorsal cerebral cells and the ventral nerve cords; the dorsal connective of D. elongatus was also immunoreactive to serotonin and acetylated ,-tubulin. The presence of paired, serotonin-like immunoreactive cells in D. baltica and other species may represent the plesiomorphic condition in Macrodasyida. The fine structure of the photoreceptors in D. baltica was also investigated to explore the potential ground pattern for eyes in the Macrodasyida. The pigmented photoreceptors of D. baltica contain a unicellular pigment cup, sheath cell and sensory receptor. The pigment cup contains numerous osmiophilic granules that presumably function to shield the eyes from downwelling light in the red part of the spectrum. Projecting into the pigment cup and sheath cell are numerous microvilli from a bipolar sensory cell. A single sensory cell may represent the plesiomorphic condition in Macrodasyida, with multiplication of sensory cells representative of more derived taxa. [source] Origin of the novel chemoreceptor Aesthetasc "Y" in Ostracoda: morphogenetical thresholds and evolutionary innovationEVOLUTION AND DEVELOPMENT, Issue 2 2008Tomonari Kaji SUMMARY The morphology and developmental processes of the two types of ostracod chemoreceptors, the Aesthetasc "Y" and the "Grouped setae," were compared. Cypridoidea and Pontocypridoidea, belonging to Cypridocopina, have a large baseball bat-like seta as an autapomorphic character on the second antenna, whereas most ostracod taxa with plesiomorphic characters bear "Grouped setae" consisting of multiple setae on the second antenna. Their budding positions, morphology, and ontogenetic changes were compared, and our deduction is that the Aesthetasc "Y" originated from "Grouped setae-like" organ in the Paleozoic. The morphogenetic processes in the molting period of these chemoreceptors were compared at the cellular level. The observations suggest that the "Grouped setae" are formed by hypodermal cells and share sheath cells corresponding to those of the Aesthetasc "Y" as a common constraint in the molting process of setae. We conclude that modification of the morphogenetic processes in the molting period of the "Grouped setae" gave rise to the Aesthetasc "Y" as a novel organ in the evolutionary pathway of the Ostracoda. [source] Functional characterization of highly adherent CD34+ keratinocytes isolated from human skinEXPERIMENTAL DERMATOLOGY, Issue 7 2010Araika Gutiérrez-Rivera Please cite this paper as: Functional characterization of highly adherent CD34+ keratinocytes isolated from human skin. Experimental Dermatology 2010; 19: 685,688. Abstract:, Compared to murine models, data on cells responsible for the homeostasis of human epidermis are scarce and often contradictory. Given the conflicting results and the availability of clinical grade protocols to purify CD34 cells from a given tissue, we pursued to phenotypically characterize human epidermal CD34+ population. After magnetic separation of whole skin CD34+ and CD34, cell fractions and selection for cells highly adherent to extracellular matrix, both CD34± fractions retained the ability to form a stratified epidermis in organotypic cultures and presented similar in vitro migratory phenotypes. However CD34, cells showed higher clonogenic potential and in vitro proliferative capacity. These results indicated that CD34, cell fraction contains stem/early progenitor cells, while CD34+ cells might be a transit-amplifying precursor for hair follicle (HF) sheath cells. The ability to isolate living cells using differential cell adhesion and surface markers provides an opportunity to study cells from different morphological regions of the HF. [source] The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterizationEXPERIMENTAL DERMATOLOGY, Issue 2 2010Manabu Ohyama Please cite this paper as: The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Experimental Dermatology 2010; 19: 89,99. Abstract:, Hair follicle morphogenesis and regeneration occur by an extensive and collaborative crosstalk between epithelial and mesenchymal skin components. A series of pioneering studies, which revealed an indispensable role of follicular dermal papilla and dermal sheath cells in this crosstalk, has led workers in the field to study in detail the anatomical distribution, functional properties, and molecular signature of the trichogenic dermal cells. The purpose of this paper was to provide a practical summary of the development and recent advances in the study of trichogenic dermal cells. Following a short review of the relevant literature, the methods for isolating and culturing these cells are summarized. Next, the bioassays, both in vivo and in vitro, that enable the evaluation of trichogenic properties of tested dermal cells are described in detail. A list of trichogenic molecular markers identified by those assays is also provided. Finally, this methods review is completed by defining some of the major questions needing resolution. [source] Plasticity of hair follicle dermal cells in wound healing and inductionEXPERIMENTAL DERMATOLOGY, Issue 2 2003A. Gharzi Abstract: The capacity of adult hair follicle dermal cells to participate in new follicle induction and regeneration, and to elicit responses from diverse epithelial partners, demonstrates a level of developmental promiscuity and influence far exceeding that of interfollicular fibroblasts. We have recently suggested that adult follicle dermal cells have extensive stem or progenitor cell activities, including an important role in skin dermal wound healing. Given that up to now tissue engineered skin equivalents have several deficiencies, including the absence of hair follicles, we investigated the capacity of follicle dermal cells to be incorporated into skin wounds; to form hair follicles in wound environments; and to create a hair follicle-derived skin equivalent. In our study, we implanted rat follicle dermal cells labelled with a vital dye into ear and body skin wounds. We found that they were incorporated into the new dermis in a manner similar to skin fibroblasts, but that lower follicle dermal sheath also assimilated into hair follicles. Using different combinations of follicle dermal cells and outer root sheath epithelial cells in punch biopsy wounds, we showed that new hair follicles were formed only with the inclusion of intact dermal papillae. Finally by combining follicle dermal sheath and outer root sheath cells in organotypic chambers, we created a skin equivalent with characteristic dermal and epidermal architecture and a normal basement membrane , the first skin to be produced entirely from hair follicle cells. These data support the hypothesis that follicle dermal cells may be important in wound healing and demonstrate their potential usefulness in human skin equivalents and skin substitutes. While we have made progress towards producing skin equivalents that contain follicles, we suggest that the failure of cultured dermal papilla cells to induce follicle formation in wounds illustrates the complex role the follicle dermis may play in skin. We believe that it demonstrates a genuine dichotomy of activity for follicle cells within skin. [source] Implication of the glutamine synthetase/glutamate synthase pathway in conditioning the amino acid metabolism in bundle sheath and mesophyll cells of maize leavesFEBS JOURNAL, Issue 12 2008Marie-Hélène Valadier We investigated the role of glutamine synthetases (cytosolic GS1 and chloroplast GS2) and glutamate synthases (ferredoxin-GOGAT and NADH-GOGAT) in the inorganic nitrogen assimilation and reassimilation into amino acids between bundle sheath cells and mesophyll cells for the remobilization of amino acids during the early phase of grain filling in Zea mays L. The plants responded to a light/dark cycle at the level of nitrate, ammonium and amino acids in the second leaf, upward from the primary ear, which acted as the source organ. The assimilation of ammonium issued from distinct pathways and amino acid synthesis were evaluated from the diurnal rhythms of the transcripts and the encoded enzyme activities of nitrate reductase, nitrite reductase, GS1, GS2, ferredoxin-GOGAT, NADH-GOGAT, NADH-glutamate dehydrogenase and asparagine synthetase. We discerned the specific role of the isoproteins of ferredoxin and ferredoxin:NADP+ oxidoreductase in providing ferredoxin-GOGAT with photoreduced or enzymatically reduced ferredoxin as the electron donor. The spatial distribution of ferredoxin-GOGAT supported its role in the nitrogen (re)assimilation and reallocation in bundle sheath cells and mesophyll cells of the source leaf. The diurnal nitrogen recycling within the plants took place via the specific amino acids in the phloem and xylem exudates. Taken together, we conclude that the GS1/ferredoxin-GOGAT cycle is the main pathway of inorganic nitrogen assimilation and recycling into glutamine and glutamate, and preconditions amino acid interconversion and remobilization. [source] Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastidsPLANT BIOTECHNOLOGY JOURNAL, Issue 2 2010Amir Sattarzadeh Summary Plastid number and morphology vary dramatically between cell types and at different developmental stages. Furthermore, in C4 plants such as maize, chloroplast ultrastructure and biochemical functions are specialized in mesophyll and bundle sheath cells, which differentiate acropetally from the proplastid form in the leaf base. To develop visible markers for maize plastids, we have created a series of stable transgenics expressing fluorescent proteins fused to either the maize ubiquitin promoter, the mesophyll-specific phosphoenolpyruvate carboxylase (PepC) promoter, or the bundle sheath-specific Rubisco small subunit 1 (RbcS) promoter. Multiple independent events were examined and revealed that maize codon-optimized versions of YFP and GFP were particularly well expressed, and that expression was stably inherited. Plants carrying PepC promoter constructs exhibit YFP expression in mesophyll plastids and the RbcS promoter mediated expression in bundle sheath plastids. The PepC and RbcS promoter fusions also proved useful for identifying plastids in organs such as epidermis, silks, roots and trichomes. These tools will inform future plastid-related studies of wild-type and mutant maize plants and provide material from which different plastid types may be isolated. [source] Comparison of leaf structure and photosynthetic characteristics of C3 and C4Alloteropsis semialata subspeciesPLANT CELL & ENVIRONMENT, Issue 2 2006O. UENO ABSTRACT Alloteropsis semialata (R. Br.) Hitchcock includes both C3 and C4 subspecies: the C3 subspecies eckloniana and the C4 subspecies semialata. We examined the leaf structural and photosynthetic characteristics of these plants. A. semialata ssp. semialata showed high activities of photosynthetic enzymes involved in phosphoenolpyruvate carboxykinase-type C4 photosynthesis and an anomalous Kranz anatomy. Phosphoenolpyruvate carboxylase; pyruvate, Pi dikinase and glycine decarboxylase (GDC) were compartmentalized between the mesophyll (M) and inner bundle sheath cells, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in both cells. A. semialata ssp. eckloniana also showed an anomalous non-Kranz anatomy, in which the mestome sheath cells included abundant chloroplasts and mitochondria. Rubisco and GDC accumulated densely in the M and mestome sheath cells, whereas the levels of C4 enzymes were low. The activity levels of photorespiratory enzymes in both subspecies were intermediate between those in typical C3 and C4 plants. The values of CO2 compensation points in A. semialata ssp. semialata were within the C4 range, whereas those in A. semialata ssp. eckloniana were somewhat lower than the C3 range. These data suggest that the plants are C3 -like and C4 -like but not typical C3 and C4, and when integrated with previous findings, point to important variability in the expression of C4 physiology in this species complex. A. semialata is therefore an intriguing grass species with which to study the evolutionary linkage between C3 and C4 plants. [source] Properties of ion channels in the protoplasts of the Mediterranean seagrass Posidonia oceanicaPLANT CELL & ENVIRONMENT, Issue 3 2004A. CARPANETO ABSTRACT Posidonia oceanica (L) Delile, a seagrass endemic of the Mediterranean sea, provides food and shelter to marine organisms. As environment contamination and variation in physico-chemical parameters may compromise the survival of the few Posidonia genotypes living in the Mediterranean, comprehending the molecular mechanisms controlling Posidonia growth and development is increasingly important. In the present study the properties of ion channels in P. oceanica plasma membranes studied by the patch-clamp technique in protoplasts obtained from the young non-photosynthetic leaves were investigated. In protoplasts that were presumably originated from sheath cells surrounding the vascular bundles of the leaves, an outward-rectifying time-dependent channel with a single channel conductance of 58 ± 2 pS which did not inactivate, was selective for potassium and impermeable to monovalent cations such as Na+, Li+ and Cs+ was identified. In the same protoplasts, an inward-rectifying channel that has a time-dependent component with single channel conductance of the order of 10 pS, a marked selectivity for potassium and no permeation to sodium was also identified, as was a third type of channel that did not display any ionic selectivity and was reversibly inhibited by tetraethylammonium and lanthanum. A comparison of Posidonia channel characteristics with channels identified in terrestrial plants and other halophytic plants is included. [source] Utilization of O2 in the metabolic optimization of C4 photosynthesisPLANT CELL & ENVIRONMENT, Issue 1 2000J. P. Maroco ABSTRACT The combined effects of O2 on net rates of photosynthesis, photosystem II activity, steady-state pool size of key metabolites of photosynthetic metabolism in the C4 pathway, C3 pathway and C2 photorespiratory cycle and on growth were evaluated in the C4 species Amaranthus edulis and the C3 species Flaveria pringlei. Increasing O2 reduced net CO2 assimilation in F. pringlei due to an increased flux of C through the photorespiratory pathway. However, in A. edulis increasing O2 up to 5,10% stimulated photosynthesis. Analysis of the pool size of key metabolites in A. edulis suggests that while there is some O2 dependent photorespiration, O2 is required for maximizing C4 cycle activity to concentrate CO2 in bundle sheath cells. Therefore, the response of net photosynthesis to O2 in C4 plants may result from the balance of these two opposing effects. Under 21 versus 5% O2, growth of A. edulis was stimulated about 30% whereas that of F. pringlei was inhibited about 40%. [source] Aberrantly differentiated cells in benign pilomatrixoma reflect the normal hair follicle: immunohistochemical analysis of Ca2+ -binding S100A2, S100A3 and S100A6 proteinsBRITISH JOURNAL OF DERMATOLOGY, Issue 2 2005K. Kizawa Summary Background, Pilomatrixoma is a common benign cutaneous tumour containing differentiated hair matrix cells. This tumour is mainly composed of basophilic, transitional, shadow and squamoid cells. Although some S100 proteins are expressed in a tissue-specific manner in the hair follicle (e.g. S100A2 in the outer root sheath, S100A3 in the cortex and cuticle, and S100A6 in the inner root sheath), little information is available concerning their distribution in the aberrantly differentiated tissues of pilomatrixoma. Objectives, To characterize the disordered epithelial elements of pilomatrixoma by localizing S100A2, S100A3 and S100A6 proteins. Methods, Immunohistochemistry and dual-immunofluorescence microscopy were performed on 22 pilomatrixoma specimens using antibodies specific to the three proteins. Results, Tissue-specific distribution of the S100 proteins investigated was preserved in the morphologically disordered tumour tissues. Anti-S100A2 antibody stained squamoid cells and putative outer root sheath cells; basophilic and potential hair matrix cells were occasionally stained. S100A3 staining was found in transitional cells and putative cortical cells, and was strong in both dispersed cells and hair-like structures surrounding cells which were presumably cuticular cells. Anti-S100A6 antibody labelled some S100A3-negative transitional cell strands, potentially inner root sheath cells. Conclusions, The epithelial elements of pilomatrixoma can be characterized using S100 proteins as biochemical markers. Our results show that pilomatrixomas retain a certain degree of differentiation indicative of distinct hair-forming cells. [source] |