Home About us Contact | |||
Shear Strain (shear + strain)
Selected AbstractsRole of p53 in human chondrocyte apoptosis in response to shear strainARTHRITIS & RHEUMATISM, Issue 8 2009Shingo Hashimoto Objective Chondrocyte apoptosis plays an important role in cartilage degeneration in osteoarthritis (OA), and mechanical injury to cartilage induces chondrocyte apoptosis. In response to DNA damage, p53 expression is up-regulated, transcription activity is increased, and apoptosis signals are initiated. The p53-regulated apoptosis-inducing protein 1 (p53AIP-1) is one of the p53-regulated genes, and is activated in response to DNA damage. This study was undertaken to analyze p53 function after induction of apoptosis by shear strain in chondrocytes. Methods OA cartilage samples were obtained from subjects undergoing total knee replacement surgery, and normal cartilage samples were obtained from subjects undergoing surgery for femoral neck fracture. Chondrocytes were isolated from human cartilage and cultured. Expression of p53 and p53AIP in chondrocytes was detected by reverse transcriptase,polymerase chain reaction and Western blotting. Shear strain was introduced in normal human knee chondrocytes. To explore p53 function, normal human knee chondrocytes were pretreated with pifithrin-, or p53 small interfering RNA (siRNA) before induction of shear strain. Chondrocyte apoptosis was detected by expression of cleaved caspase 9 with Western blotting and TUNEL staining. Expression of p53 and p53AIP-1 was analyzed by Western blotting. Results OA and normal chondrocytes expressed p53. OA chondrocytes showed much higher expression of p53 and p53AIP-1 than did normal chondrocytes. TUNEL-positive cells and expression of p53, p53AIP-1, and cleaved caspase 9 were increased by shear strain, but chondrocyte apoptosis was suppressed after pretreatment with pifithrin-, or p53 siRNA. Conclusion Our findings indicate that p53 and p53AIP-1 play important roles in human chondrocyte apoptosis. Down-regulation of p53 expression prevents cartilage from undergoing apoptosis introduced by shear strain. [source] Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn,Teller transitions in ABX3 perovskites.ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2009The structural evolution of selected perovskites containing Jahn,Teller cations has been investigated in the light of a formal analysis of symmetry hierarchies for phase transitions driven by octahedral tilting and Jahn,Teller cooperative distortions. General expressions derived from the strain/order-parameter coupling relationships allowed by symmetry are combined with observed changes in lattice parameters to reveal details of order-parameter evolution and coupling. LuVO3, YbVO3, YVO3 and CeVO3 are representative of systems which develop Jahn,Teller ordering schemes associated with irreducible representations and of the space group . Tilting of their octahedra is associated with and . The Pnma ( tilting) ,P21/a ( tilting, Jahn,Teller order) transition below room temperature is close to second order in character. Shear strains which depend primarily on tilt angles show little variation, implying that there is only weak coupling between the tilting and Jahn,Teller order parameters. The subsequent P21/a,Pnma ( tilting, Jahn,Teller order) is first order in character, and involves either a reduction in the tilt angle or a change in the strength of tilt/Jahn,Teller order-parameter coupling. In LaMnO3, the isosymmetric Pnma ( tilting) ,Pnma ( tilting, Jahn,Teller order) transition can be described in terms of a classical first-order transition conforming to a 246 Landau expansion with negative fourth-order coefficients. Strain evolution in Ba-doped samples suggests that the transition becomes second order in character and reveals a new strain relaxation mechanism in LaMnO3 which might be understood in terms of local strain heterogeneities due to the disordering of distorted MnO6 octahedra. Transitions in PrAlO3 and La0.5Ba0.5CoO3 illustrate the transformation behaviour of systems in which the Jahn,Teller ordering scheme is associated with the irreducible representation . Overall, coupled tilting + Jahn,Teller phase transitions in perovskites conform to mean-field behaviour, consistent with the underlying role of strain in promoting long interaction lengths. [source] Dynamics of Dislocations in a 2D Plasma CrystalCONTRIBUTIONS TO PLASMA PHYSICS, Issue 4-5 2009V. Nosenko Abstract Recent experimental results on the dislocation dynamics in a two-dimensional plasma crystal are reviewed. A single layer of micron-size microspheres was suspended in the sheath of a capacitively coupled rf discharge. The particles self-organized in a triangular lattice. Edge dislocations were created in pairs in this plasma crystal when the internal shear stress built up above a threshold, due to the crystal's slow differential rotation. Basic stages of dislocation nucleation were identified and studied, from gradual pile-up of shear strain in the crystal to eventual escape of free dislocations. After nucleation, dislocations moved supersonically with respect to the shear waves and generated shear-wave Mach cones (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Gelifluction: viscous flow or plastic creep?EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2003Charles Harris Abstract This paper reports results from two scaled centrifuge modelling experiments, designed to simulate thaw-related geli,uction. A planar 12° prototype slope was modelled in each experiment, using the same natural ,ne sandy silt soil. However two different scales were used. In Experiment 1, the model scale was 1/10, tested in the centrifuge at 10 gravities (g) and in Experiment 2, the scale was 1/30, tested at 30 g. Centrifuge scaling laws indicate that the time scaling factor for thaw consolidation between model and prototype is N2, where N is the number of gravities under which the model was tested. However, the equivalent time scaling for viscous ,ow is 1/1. If geli,uction is a viscosity-controlled ,ow process, scaling con,icts will therefore arise during centrifuge modelling of thawing slopes, and rates of displacement will not scale accurately to the prototype. If, however, no such scaling con,icts are observed, we may conclude that geli,uction is not controlled by viscosity, but rather by elasto-plastic soil deformation in which frictional shear strength depends on effective stress, itself a function of the thaw consolidation process. Models were saturated, consolidated and frozen from the surface downwards on the laboratory ,oor. The frozen models were then placed in the geotechnical centrifuge and thawed from the surface down. Each model was subjected to four freeze,thaw cycles. Soil temperatures and pore water pressures were monitored, and frost heave, thaw settlement and downslope displacements measured. Pore water pressures, displacement rates and displacement pro,les re,ecting accumulated shear strain, were all similar at the two model scales and volumetric soil transport per freeze,thaw cycle, when scaled to prototype, were virtually identical. Displacement rates and pro,les were also similar to those observed in earlier full-scale laboratory ,oor experiments. It is concluded therefore that the modelled geli,uction was not a time-dependent viscosity-controlled ,ow phenomenon, but rather elasto-plastic in nature. A ,rst approximation ,,ow' law is proposed, based on the ,Cam Clay' constitutive model for soils. Copyright © 2003 John Wiley & Sons, Ltd. [source] Large eddy simulation of passive scalar in complex turbulence with flow impingement and flow separationHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 5 2001Ken-ichi Abe Abstract In order to reveal unknown characteristics of complex turbulent passive scalar fields, large eddy simulations in forced convection regimes have been performed under several strain conditions, including flow impingement and flow separation. By using the simulation results, relations between the dynamic and scalar fields are carefully examined. It is then confirmed that the scalar is transported by a large vortex structure near the examined regions wherever the mean shear vanishes, although in the high-shear regions, the scalar transport is governed by a coherent structure due to the high shear strain. In addition, a priori explorations are attempted by processing the data, focusing on the derivation of a possible direction for modeling algebraically the passive scalar transport in a complex strain field. The a priori tests suggest that an expanded form of the GGDH model introducing a quadratic product of the Reynolds stresses is promising for general flow cases. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 402,418, 2001 [source] Analysis of undrained cavity expansion in elasto-plastic soils with non-linear elasticityINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2002Lai Fa Cao Abstract A large strain analysis of undrained expansion of a spherical/cylindrical cavity in a soil modelled as non-linear elastic modified Cam clay material is presented. The stress,strain response of the soil is assumed to obey non-linear elasticity until yielding. A power-law characteristic or a hyperbolic stress,strain curve is used to describe the gradual reduction of soil stiffness with shear strain. It is assumed that, after yielding, the elasto-plastic behaviour of the soil can be described by the modified Cam clay model. Based on a closed-form stress,strain response in undrained condition, a numerical solution is obtained with the aid of simple numerical integration technique. The results show that the stresses and the pore pressure in the soil around an expanded cavity are significantly affected by the non-linear elasticity, especially if the soil is overconsolidated. The difference between large strain and small strain solutions in the elastic zone is not significant. The stresses and the pore pressure at the cavity wall can be expressed as an approximate closed-form solution. Copyright © 2001 John Wiley & Sons, Ltd. [source] Inelastic constitutive properties and shear localization in Tennessee marbleINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2001D. J. Holcomb Abstract The inelastic response of Tennessee marble is modelled by an elastic plastic constitutive relation that includes pressure dependence of yield, strain-softening and inelastic volume strain (dilatancy). Data from 12 axisymmetric compression tests at confining pressures from 0 to 100 MPa are used to determine the dependence of the yield function and plastic potential, which are different, on the first and second stress invariants and the accumulated inelastic shear strain. Because the data requires that the strain at peak stress depends on the mean stress, the locus of peak stresses is neither a yield surface nor a failure envelope, as is often assumed. Based on the constitutive model and Rudnicki and Rice criterion, localization is not predicted to occur in axisymmetric compression although faulting is observed in the tests. The discrepancy is likely due to the overly stiff response of a smooth yield surface model to abrupt changes in the pattern of straining. The constitutive model determined from the axisymmetric compression data describes well the variation of the in-plane stress observed in a plane strain experiment. The out-of-plane stress is not modelled well, apparently because the inelastic normal strain in this direction is overpredicted. In plane strain, localization is predicted to occur close to peak stress, in good agreement with the experiment. Observation of localization on the rising portion of the stress,strain curve in plane strain does not, however, indicate prepeak localization. Because of the rapid increase of mean stress in plane strain, the stress,strain curve can be rising while the shear stress versus shear strain curve at constant mean stress is falling (negative hardening modulus). Copyright © 2001 John Wiley & Sons, Ltd. [source] A rational elasto-plastic spatially curved thin-walled beam elementINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2007Yong-Lin Pi Abstract Torsion is one of the primary actions in members curved in space, and so an accurate spatially curved-beam element needs to be able to predict the elasto-plastic torsional behaviour of such members correctly. However, there are two major difficulties in most existing finite thin-walled beam elements, such as in ABAQUS and ANSYS, which may lead to incorrect predictions of the elasto-plastic behaviour of members curved in space. Firstly, the integration sample point scheme cannot capture the shear strain and stress information resulting from uniform torsion. Secondly, the higher-order twists are ignored which leads to loss of the significant effects of Wagner moments on the large twist torsional behaviour. In addition, the initial geometric imperfections and residual stresses are significant for the elasto-plastic behaviour of members curved in space. Many existing finite thin-walled beam element models do not provide facilities to deal with initial geometric imperfections. Although ABAQUS and ANSYS have facilities for the input of residual stresses as initial stresses, they cannot describe the complicated distribution patterns of residual stresses in thin-walled members. Furthermore, external loads and elastic restraints may be applied remote from shear centres or centroids. The effects of the load (and restraint) positions are important, but are not considered in many beam elements. This paper presents an elasto-plastic spatially curved element with arbitrary thin-walled cross-sections that can correctly capture the uniform shear strain and stress information for integration, and includes initial geometric imperfections, residual stresses and the effects of the load and restraint positions. The element also includes elastic restraints and supports, which have to be modelled separately as spring elements in some other finite thin-walled beam elements. Comparisons with existing experimental and analytical results show that the elasto-plastic spatially curved-beam element is accurate and efficient. Copyright © 2006 John Wiley & Sons, Ltd. [source] Morphological analysis of the tiger stripe on injection molding of polypropylene/ethylene-propylene rubber/talc blends dependent on based polypropylene designJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007Koki Hirano Abstract Tiger stripe of injection molding of polypropylene (PP)/elastomer/talc blends was analyzed in terms of the morphology of the dispersed phase comprising elastomer components by using gloss and scanning electron microscopy (SEM). In addition, the contribution of the polymer design of PP, i.e., industrial block-type grade consisting of a homo-PP portion as the matrix and an ethylene propylene random copolymer portion as the domain is discussed. Local gloss measurement of the injected specimen along with the flow direction of the molten blends indicates a periodic fluctuation repeating higher and lower degrees of gloss, corresponding to the period of glossy and cloudy portions of the tiger stripe, respectively. These local gloss degrees are highly dependent on the morphologies of the dispersed phases near the surface layer of the injected specimen. The gloss increases when the ratio long axis (L) and diameter (D), L/D, of the dispersed phase are increased, and the gloss decreases when the L/D is decreased. Increasing the intrinsic viscosity of the ethylene-propylene rubber portion of the PP is an effective design factor for restricting the deformation against shear strain during injection process by giving the dispersed phases high elasticity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 192,199, 2007 [source] RHEOLOGY AND TEXTURE OF COMMERCIAL QUESO FRESCO CHEESES MADE FROM RAW AND PASTEURIZED MILKJOURNAL OF FOOD QUALITY, Issue 2010MICHAEL H. TUNICK ABSTRACT Queso Frescos made in Mexico from raw milk (RM) were compared with cheeses made in Mexico and the U.S.A. from pasteurized milk (PM) to determine textural and rheological differences. RM cheese, considered the ideal Queso Fresco, contained more moisture than PM cheeses, displayed higher cohesiveness and shear strain and exhibited lower hardness and shear stress. The U.S.-made cheeses were harder and more brittle and crumbly than the Mexican cheeses. The shear stress decreased as fat content increased in all samples, and the shear strain decreased as the pH increased in the Mexican cheeses. An understanding of the differences between the RM and PM versions should allow cheese makers to adjust manufacturing procedures so that PM Queso Fresco cheeses will meet consumer expectations. PRACTICAL APPLICATIONS Hispanic cheeses such as Queso Fresco are gaining in popularity in the U.S.A. The milk for making Queso Fresco in the U.S.A. must be pasteurized, and the resulting cheese is perceived by some consumers to be inferior in flavor and texture to the traditional variety made from raw milk. Queso Fresco samples made in Mexico from both kinds of milk and made in the U.S.A. from pasteurized milk were analyzed to see if there were differences in texture, structure, and the ability to twist and break pieces of the cheese. The cheeses made in the U.S.A. contained less moisture and were too hard, crumbly, and brittle when compared to the raw milk cheeses. The differences observed should enable U.S. companies to make Queso Fresco with properties close to those of the raw milk variety. [source] Effects of shear and electrical properties on flow characteristics of pharmaceutical blendsAICHE JOURNAL, Issue 3 2010Kalyana C. Pingali Abstract This article examines the effects and interactions of shear rate, shear strain on electrical and flow properties of pharmaceutical blends. An unexpectedly strong relation between the flow and passive electrical properties of powders is observed to depend on the shear history of the powder bed. Charge density, impedance, dielectrophoresis, flow index, and dilation were measured for several pharmaceutical blends after they were subjected to a controlled shear environment. It was found that the increase in the shear strain intensified the electrical properties for blends that did not contain MgSt. The opposite effect was found in blends lubricated with MgSt. Different shear conditions resulted in different correlations between flow index and dilation. Flow properties of powders were found to improve with continuous exposure to shear strain. It was also found that flow properties correlated to charge acquisition and impedance for different shear treatments. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Schlieren formation in diatexite migmatite: examples from the St Malo migmatite terrane, FranceJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2003I. Milord Abstract Schlieren are trains of platy or blocky minerals, typically the ferromagnesian minerals and accessory phases, that occur in granites and melt-rich migmatites, such as diatexites. They have been considered as: (1) unmelted residue from xenoliths or the source region; (2) mineral accumulations formed during magma flow; (3) compositional layering; and (4) sites of melt loss. In order to help identify schlieren-forming processes in the diatexites at St Malo, differences in the size, shape, orientation, distribution and composition of the biotite from schlieren and from their hosts have been investigated. Small biotite grains are much less abundant in the schlieren than in their hosts. Schlieren biotite grains are generally larger, have greater aspect ratios and have, except in hosts with low (< 10%) biotite contents, a much stronger shape preferred orientation than host biotite. The compositional ranges of host and schlieren biotite are similar, but schlieren biotite defines tighter, sharper peaks on composition-frequency plots. Hosts show magmatic textures such as imbricated (tiled), unstrained plagioclase. Some schlieren show only magmatic textures (tiled biotite, no crystal-plastic strain features), but many have textures indicating submagmatic and subsolidus deformation (e.g. kinked grains) and these schlieren show the most extensive evidence for recrystallization. Magmas at St Malo initially contained a significant fraction of residual biotite and plagioclase crystals; smaller biotite grains were separated from the larger plagioclase crystals during magma flow. Since plagioclase was also the major, early crystallizing phase, the plagioclase-rich domains developed rapidly and reached the rigid percolation threshold first, forcing further magma flow to be concentrated into narrowing melt-rich zones where the biotite had accumulated, hence increasing shear strain and the degree of shape preferred orientation in these domains. Schlieren formed in these domains as a result of grain contacts and tiling in the grain inertia-regime. Final amalgamation of the biotite aggregates into schlieren involved volume loss as melt trapped between grains was expelled after the rigid percolation threshold was reached in the biotite-rich layers. [source] Solifluction processes on permafrost and non-permafrost slopes: results of a large-scale laboratory simulationPERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2008Charles Harris Abstract We present results of full-scale physical modelling of solifluction in two thermally defined environments: (a) seasonal frost penetration but no permafrost, and (b) a seasonally thawed active layer above cold permafrost. Modelling was undertaken at the Laboratoire M2C, Université de Caen-Basse Normandie, Centre National de la Recherche Scientifique, France. Two geometrically similar slope models were constructed using natural frost-susceptible test soil. In Model 1 water was supplied via a basal sand layer during freezing. In Model 2 the basal sand layer contained refrigerated copper tubing that maintained a permafrost table. Soil freezing was from the top down in Model 1 (one-sided freezing) but from the top down and bottom up (two-sided freezing) in Model 2. Thawing occurred from the top down as a result of positive air temperatures. Ice segregation in Model 1 decreased with depth, but in Model 2, simulated rainfall led to summer frost heave associated with ice segregation at the permafrost table, and subsequent two-sided freezing increased basal ice contents further. Thaw consolidation in Model 1 decreased with depth, but in Model 2 was greatest in the ice-rich basal layer. Soil shear strain occurred during thaw consolidation and was accompanied by raised pore water pressures. Displacement profiles showed decreasing movement rates with depth in Model 1 (one-sided freezing) but ,plug-like' displacements of the active layer over a shearing basal zone in Model 2 (two-sided active layer freezing). Volumetric transport rates were approximately 2.8 times higher for a given rate of surface movement in the permafrost model compared with the non-permafrost model. Copyright © 2008 John Wiley & Sons, Ltd. [source] Shear properties of epoxy under high strain rate loadingPOLYMER ENGINEERING & SCIENCE, Issue 4 2010Niranjan K. Naik Shear properties of epoxy LY 556 under high strain rate loading are presented. Torsional Split Hopkinson Bar apparatus was used for the studies in the shear strain rate range of 385,880 per sec. Experimental details, specimen configuration and development, data acquisition, and processing are presented. Shear strength, shear modulus, and ultimate shear strain are presented as a function of shear strain rate. For comparison, studies are presented at quasi-static loading. It is observed that the shear strength at high strain rate is enhanced up to 45% compared with that at quasi-static loading in the range of parameters considered. Further, it is observed that, in the range of parameters considered, the change in shear properties with the change in shear strain rate is not significant. Comparison of torque versus time behavior derived from signals obtained from strain gauges mounted on incident bar and transmitter bar is also presented. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers [source] Structural relaxation and evolution of yield stress in epoxy glass aged under shear strain,POLYMER ENGINEERING & SCIENCE, Issue 1 2005Hiroshi Kawakami Hollow cylindrical specimens of annealed epoxy glass were twisted and then aged for various periods of time under shear strain. At the end of the aging process, we twisted the specimens again to determine the stress,strain relations. For specimens aged under a shear strain of 0.005 or 0.01, the stress relaxation behavior was almost independent of the amount of strain imposed, and the value of stress at the upper yield point, regardless of aging time, was almost the same as that of the annealed specimen. On the other hand, for specimens aged under a strain of 0.02 or 0.04, the stress relaxation behavior depended on the value of the strain applied, and the value of stress at the upper yield point first decreased and subsequently increased with increasing aging time. These results led us to the following conclusions: If epoxy glass is strained largely, the originally stable structure becomes unstable. Also, when epoxy glass is aged under strain, the stability of the structure continues to decrease for a short period of time after deformation ceases, and then increases with increasing aging time. POLYM. ENG. SCI. 45:20,24, 2005. © 2004 Society of Plastics Engineers. [source] Viscoelasticity of Hyaluronan and Nonhyaluronan Based Vocal Fold Injectables: Implications for Mucosal Versus Muscle Use,THE LARYNGOSCOPE, Issue 3 2007Trace Caton BS Abstract Objectives: The purpose of this study was to measure and compare biomechanical properties of commonly used vocal fold injectates Cymetra, Radiesse, Restylane, Hylaform, and one investigational injectate, Carbylan-GSX 5%, to determine suitability for mucosal injection. Study Design: Rheologic investigation. Methods: Oscillatory shear stress was applied to five samples of each injectate using a parallel plate controlled stress rheometer. Shear stress, shear strain, and strain rate associated with the oscillatory shear deformation were computed from the prescribed torque and measured angular velocity; viscoelastic data were obtained on the basis of these functions. Values calculated included elastic shear moduli, viscous moduli, and dynamic viscosity as a function of oscillatory frequency (0.01,150 Hz). Results: Elastic moduli for all samples increased as the frequency increased. Hyaluronan based materials were all comparable with each other and at least an order of magnitude lower than the stiffer and more viscous Cymetra and Radiesse. Carbylan-GSX 5% was found to have almost identical values to Hylaform with the exception of its mean viscosity, which was noticeably lower. Conclusions: Hyaluronan based biomaterials offer less resistance to flow and stiffness and may be better suited for injections into the mucosa, whereas Cymetra and Radiesse appear to be appropriate for injections into muscle. Viscoelastic properties of Hylaform and Carbylan-GSX 5% were found to most resemble that of the human vocal fold mucosa. [source] Role of p53 in human chondrocyte apoptosis in response to shear strainARTHRITIS & RHEUMATISM, Issue 8 2009Shingo Hashimoto Objective Chondrocyte apoptosis plays an important role in cartilage degeneration in osteoarthritis (OA), and mechanical injury to cartilage induces chondrocyte apoptosis. In response to DNA damage, p53 expression is up-regulated, transcription activity is increased, and apoptosis signals are initiated. The p53-regulated apoptosis-inducing protein 1 (p53AIP-1) is one of the p53-regulated genes, and is activated in response to DNA damage. This study was undertaken to analyze p53 function after induction of apoptosis by shear strain in chondrocytes. Methods OA cartilage samples were obtained from subjects undergoing total knee replacement surgery, and normal cartilage samples were obtained from subjects undergoing surgery for femoral neck fracture. Chondrocytes were isolated from human cartilage and cultured. Expression of p53 and p53AIP in chondrocytes was detected by reverse transcriptase,polymerase chain reaction and Western blotting. Shear strain was introduced in normal human knee chondrocytes. To explore p53 function, normal human knee chondrocytes were pretreated with pifithrin-, or p53 small interfering RNA (siRNA) before induction of shear strain. Chondrocyte apoptosis was detected by expression of cleaved caspase 9 with Western blotting and TUNEL staining. Expression of p53 and p53AIP-1 was analyzed by Western blotting. Results OA and normal chondrocytes expressed p53. OA chondrocytes showed much higher expression of p53 and p53AIP-1 than did normal chondrocytes. TUNEL-positive cells and expression of p53, p53AIP-1, and cleaved caspase 9 were increased by shear strain, but chondrocyte apoptosis was suppressed after pretreatment with pifithrin-, or p53 siRNA. Conclusion Our findings indicate that p53 and p53AIP-1 play important roles in human chondrocyte apoptosis. Down-regulation of p53 expression prevents cartilage from undergoing apoptosis introduced by shear strain. [source] Biomechanics of cartilage articulation: Effects of lubrication and degeneration on shear deformationARTHRITIS & RHEUMATISM, Issue 7 2008Benjamin L. Wong Objective To characterize cartilage shear strain during articulation, and the effects of lubrication and degeneration. Methods Human osteochondral cores from lateral femoral condyles, characterized as normal or mildly degenerated based on surface structure, were selected. Under video microscopy, pairs of osteochondral blocks from each core were apposed, compressed 15%, and subjected to relative lateral motion with synovial fluid (SF) or phosphate buffered saline (PBS) as lubricant. When cartilage surfaces began to slide steadily, shear strain (Exz) and modulus (G) overall in the full tissue thickness and also as a function of depth from the surface were determined. Results In normal tissue with SF as lubricant, Exz was highest (0.056) near the articular surface and diminished monotonically with depth, with an overall average Exz of 0.028. In degenerated cartilage with SF as lubricant, Exz near the surface (0.28) was 5-fold that of normal cartilage and localized there, with an overall Exz of 0.041. With PBS as lubricant, Exz values near the articular surface were ,50% higher than those observed with SF, and overall Exz was 0.045 and 0.062 in normal and degenerated tissue, respectively. Near the articular surface, G was lower with degeneration (0.06 MPa, versus 0.18 MPa in normal cartilage). In both normal and degenerated cartilage, G increased with tissue depth to 3,4 MPa, with an overall G of 0.26,0.32 MPa. Conclusion During articulation, peak cartilage shear is highest near the articular surface and decreases markedly with depth. With degeneration and diminished lubrication, the markedly increased cartilage shear near the articular surface may contribute to progressive cartilage deterioration and osteoarthritis. [source] Analytical solutions for a three-invariant Cam clay model subjected to drained loading historiesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2006Dunja Peri Abstract Analytical solutions are derived for a three-invariant Cam clay model subjected to proportional and circular drained loading histories. The solutions are presented for a specific volume, and volumetric and generalized shear strains. In the case of a proportional loading only straight effective stress paths are considered while in the case of a circular loading the maximum possible change in Lode's angle is ,/3 due to plastic isotropy. Additionally, a concept of deviatoric stiffness is devised and an analytical expression for the generalized hardening modulus is derived. Qualitative and quantitative analyses are carried out in the form of direct comparisons between analytical solutions for drained and undrained loading histories thus offering an improved understanding of the three-invariant model. Copyright © 2006 John Wiley & Sons, Ltd. [source] An efficient co-rotational formulation for curved triangular shell elementINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 9 2007Zhongxue Li Abstract A 6-node curved triangular shell element formulation based on a co-rotational framework is proposed to solve large-displacement and large-rotation problems, in which part of the rigid-body translations and all rigid-body rotations in the global co-ordinate system are excluded in calculating the element strain energy. Thus, an element-independent formulation is achieved. Besides three translational displacement variables, two components of the mid-surface normal vector at each node are defined as vectorial rotational variables; these two additional variables render all nodal variables additive in an incremental solution procedure. To alleviate the membrane and shear locking phenomena, the membrane strains and the out-of-plane shear strains are replaced with assumed strains in calculating the element strain energy. The strategy used in the mixed interpolation of tensorial components approach is employed in defining the assumed strains. The internal force vector and the element tangent stiffness matrix are obtained from calculating directly the first derivative and second derivative of the element strain energy with respect to the nodal variables, respectively. Different from most other existing co-rotational element formulations, all nodal variables in the present curved triangular shell formulation are commutative in calculating the second derivative of the strain energy; as a result, the element tangent stiffness matrix is symmetric and is updated by using the total values of the nodal variables in an incremental solution procedure. Such update procedure is advantageous in solving dynamic problems. Finally, several elastic plate and shell problems are solved to demonstrate the reliability, efficiency, and convergence of the present formulation. Copyright © 2007 John Wiley & Sons, Ltd. [source] A new approach to reduce membrane and transverse shear locking for one-point quadrature shell elements: linear formulationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2006Rui P. R. Cardoso Abstract In the last decade, one-point quadrature shell elements attracted many academic and industrial researchers because of their computational performance, especially if applied for explicit finite element simulations. Nowadays, one-point quadrature finite element technology is not only applied for explicit codes, but also for implicit finite element simulations, essentially because of their efficiency in speed and memory usage as well as accuracy. In this work, one-point quadrature shell elements are combined with the enhanced assumed strain (EAS) method to develop a finite element formulation for shell analysis that is, simultaneously, computationally efficient and more accurate. The EAS method is formulated to alleviate locking pathologies existing in the stabilization matrices of one-point quadrature shell elements. An enhanced membrane field is first constructed based on the quadrilateral area coordinate method, to improve element's accuracy under in-plane loads. The finite element matrices were projected following the work of Wilson et al. (Numerical and Computer Methods in Structural Mechanics, Fenven ST et al. (eds). Academic Press: New York, 1973; 43,57) for the incompatible modes approach, but the present implementation led to more accurate results for distorted meshes because of the area coordinate method for quadrilateral interpolation. The EAS method is also used to include two more displacement vectors in the subspace basis of the mixed interpolation of tensorial components (MITC) formulation, thus increasing the dimension of the null space for the transverse shear strains. These two enhancing vectors are shown to be fundamental for the Morley skew plate example in particular, and in improving the element's transverse shear locking behaviour in general. Copyright © 2005 John Wiley & Sons, Ltd. [source] Measuring anisotropic thermal conduction in polyisobutylene following step shear strainsAICHE JOURNAL, Issue 3 2000Hadjira Iddir The connection between polymer chain orientation and several macroscopic properties in a polymer melt was studied using mechanical and optical techniques. Anisotropic thermal conductivity following shear deformation was measured using forced Rayleigh light scattering, the refractive index tensor is followed using birefringence measurements, and the stress was measured mechanically in a parallel-plate rheometer. The thermal diffusivity measured in the flow and neutral directions increased and decreased, respectively, immediately following the deformation. These quantities then relaxed to the equilibrium value on the time-scale of the stress-relaxation memory. Comparison of the difference between measured flow and neutral direction thermal diffusivities with the analogous flow-induced birefringence in the same deformation provided indirect evidence for a linear relation between stress and thermal diffusivity at two different values of strain. Mechanical measurements were used to characterize the memory of the fluid. [source] |