Home About us Contact | |||
Several Physiological (several + physiological)
Terms modified by Several Physiological Selected AbstractsMercury-induced reproductive impairment in fish,,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2009Kate L. Crump Abstract Mercury is a potent neurotoxin, and increasing levels have led to concern for human and wildlife health in many regions of the world. During the past three decades, studies in fish have examined the effects of sublethal mercury exposure on a range of endpoints within the reproductive axis. Mercury studies have varied from highly concentrated aqueous exposures to ecologically relevant dietary exposures using levels comparable to those currently found in the environment. This review summarizes data from both laboratory and field studies supporting the hypothesis that mercury in the aquatic environment impacts the reproductive health of fish. The evidence presented suggests that the inhibitory effects of mercury on reproduction occur at multiple sites within the reproductive axis, including the hypothalamus, pituitary, and gonads. Accumulation of mercury in the fish brain has resulted in reduced neurosecretory material, hypothalamic neuron degeneration, and alterations in parameters of monoaminergic neurotransmission. At the level of the pituitary, mercury exposure has reduced and/or inactivated gonadotropin-secreting cells. Finally, studies have examined the effects of mercury on the reproductive organs and demonstrated a range of effects, including reductions in gonad size, circulating reproductive steroids, gamete production, and spawning success. Despite some variation between studies, there appears to be sufficient evidence from laboratory studies to link exposure to mercury with reproductive impairment in many fish species. Currently, the mechanisms underlying these effects are unknown; however, several physiological and cellular mechanisms are proposed within this review. [source] Physiological Society Symposium , the Athlete's HeartEXPERIMENTAL PHYSIOLOGY, Issue 5 2003Athlete's heart, effect of age, ethnicity, sporting discipline Regular physical training is associated with several physiological and biochemical adaptations which enable an increase in cardiac output and widening of the systemic arterio-venous oxygen difference. An increase in cardiac chamber size is fundamental to the generation of a sustained increase in cardiac output for prolonged periods. Echocardiographic studies have shown that the vast majority of athletes have modest cardiac enlargement although a small proportion exhibit substantial increases in heart size. Recognised determinants of cardiac size include age, sex, ethnicity and type of sport. Cardiac dimensions vary considerably amongst athletes, even when allowances are made for these variables, suggesting that genetic, endocrine and biochemical factors also influence heart size. This review discusses the effects of age, sex, ethnicity and sporting discipline on cardiac dimensions in athletic individuals. [source] Over-expression of Toll-like receptors and their ligands in small-for-size graftHEPATOLOGY RESEARCH, Issue 3 2010Weiwei Jiang Aim:, Toll-like receptors (TLRs) participate in several physiological and pathological processes of transplantation, including inflammation and allograft rejection, but the expression of TLRs and their ligands remains undetermined in small-for-size graft transplantation. Methods:, A non-arterialized partial liver transplantation model was used. The expression of TLR2 and TLR4 mRNA and protein, CD14 and Myeloid Differentiation-2 (MD-2) mRNA, as well as TLR2 and TLR4 exogenous ligands (endotoxin) and endogenous ligands [heat shock protein (HSP) 60 and 70] were assessed. The signaling pathways induced by TLR2 and TLR4 were also assessed. Results:, In small-for-size liver graft, the expression of mRNA and protein of TLR2 and TLR4, CD14 and MD-2 mRNA, as well as endogenous ligands of TLR2 and TLR4 such as HSP60 and HSP70 was quickly and significantly increased after reperfusion, and reached a peak at 3 h after reperfusion. The levels of exogenous ligands (endotoxin) were increased and reached a peak at 6 h after reperfusion. The appearance of TLR2 and TLR4 mRNA was accompanied by increased HSP 60 and 70 mRNA within 24 h after reperfusion. In the small-for-size group, the peak levels of TLRs and their endogenous ligands appeared earlier than those in the full size group; the peak levels of TLRs and their endogenous and exogenous ligands were higher than those in the full size group. Conclusion:,TLR2 and TLR4, as well as their endogenous and exogenous ligands were activated in small-for-size liver graft transplantation. [source] Terminal nerve and visionMICROSCOPY RESEARCH AND TECHNIQUE, Issue 1-2 2004U. Behrens Abstract The vertebrate retina receives efferent input from different parts of the central nervous system. Efferent fibers are thought to influence retinal information processing but their functional role is not well understood. One of the best-described retinopetal fiber systems in teleost retinae belongs to the terminal nerve complex. Gonadotropin-releasing hormone (GnRH) and molluscan cardioexcitatory tetrapeptide (FMRFamide)-containing fibers from the ganglion of the terminal nerve form a dense fiber plexus in the retina at the border of the inner nuclear and inner plexiform layer. Peptide-containing fibers surround and contact perikarya of dopaminergic interplexiform cells in teleost retina. In vitro experiments demonstrated that exogenously supplied GnRH mediates dopaminergic effects on the membrane potential and on the morphology of dendritic tips (spinules) of cone horizontal cells. These effects can be specifically blocked by GnRH-antagonists, indicating that the release of dopamine and dopamine-dependent effects on light adaptation of retinal neurons are affected by the terminal nerve complex. Recent data have shown that olfactory information has an impact on retinal physiology, but its precise role is not clear. The efferent fiber of the terminal nerve complex is one of the first retinopetal fiber systems for which the sources of the fibers, their cellular targets, and several physiological, morphological, and behavioral effects are known. The terminal nerve complex is therefore a model system for the analysis of local information processing which is influenced by a distinct fiber projection. Microsc. Res. Tech. 65:25,32, 2004. © 2004 Wiley-Liss, Inc. [source] Demonstration of an orexinergic central innervation of the pineal gland of the pigTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2004Chiara Fabris Abstract Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs. J. Comp. Neurol. 471:113,127, 2004. © 2004 Wiley-Liss, Inc. [source] Reversal Blood Flow Component as Determinant of the Arterial Functional Capability: Theoretical Implications in Physiological and Therapeutic ConditionsARTIFICIAL ORGANS, Issue 3 2009Daniel Bia Abstract In several physiological, pathological, and therapeutic circumstances, the arterial blood flow is acutely modified, increasing, in some vascular segments the reversal (SSR) and oscillatory (SSO) components of the shear stress. Recently, in an in vivo model we found a relationship between acute changes in SSR and SSO, and variations in the arterial viscoelasticity. As the arterial viscoelasticity and diameter are the main determinants of the arterial buffering (BF) and conduit (CF) functions, changes in those functions could be expected associated with variations in SSR and SSO. The aim was to analyze the association between acute increases in SSR and SSO, and changes in the aortic CF and BF. Aortic flow, pressure, and diameter were measured in 16 sheep under basal and high reversal and oscillatory flow conditions (high SSR and SSO). Aortic BF and CF were quantified, and their potential association with the SSR and SSO components were analyzed. During high reversal flow rate conditions, a smooth muscle contraction-pattern was evidenced, with an increase in BF and a decrease in CF. Changes in BF and CF were associated with the changes in SSR and SSO. The acute effects on the arterial wall biomechanics of variations in SSR and SSO could contribute to comprehend their chronic effects, and the meaning of the acute vascular effects of changes in SSR and SSO would depend on the situation. Increases in SSR and SSO could be associated with smooth muscle tone increase-dependent changes in arterial BF and CF. [source] The heterogeneity of the glycosylation of alpha-1-acid glycoprotein between the sera and synovial fluid in rheumatoid arthritisBIOMEDICAL CHROMATOGRAPHY, Issue 4 2002Kevin D. Smith Alpha-1-acid glycoprotein (AGP) is a plasma glycoprotein produced by the liver that undergoes increased production and altered glycosylation in several physiological and pathological conditions including rheumatoid arthritis. To date, although present in the synovial fluid of rheumatoid arthritis patients, there has been no evidence for the separate extra-hepatic production of AGP. This study indicates that there could be a localized production of AGP in rheumatoid synovial fluid by demonstrating that the glycosylation patterns of AGP differed between the serum and synovial fluid in the same rheumatoid patient. Serum AGP was largely composed of fucosylated tri- and tetra-antennary oligosaccharide chains while the synovial fluid contained mainly bi-antennary chains that were fucosylated to a lesser extent. This structural heterogeneity of glycosylation resulted in functional diversity; serum but not synovial AGP is able to inhibit binding to the cell adhesion molecule E-selectin through expression of antigen sialyl Lewis X. Copyright © 2002 John Wiley & Sons, Ltd. [source] Essential fatty acids: biochemistry, physiology and pathologyBIOTECHNOLOGY JOURNAL, Issue 4 2006Undurti N. Das Dr. Abstract Essential fatty acids (EFAs), linoleic acid (LA), and ,-linolenic acid (ALA) are essential for humans, and are freely available in the diet. Hence, EFA deficiency is extremely rare in humans. To derive the full benefits of EFAs, they need to be metabolized to their respective long-chain metabolites, i.e., dihomo-,-linolenic acid (DGLA), and arachidonic acid (AA) from LA; and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from ALA. Some of these long-chain metabolites not only form precursors to respective prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), but also give rise to lipoxins (LXs) and resolvins that have potent anti-inflammatory actions. Furthermore, EFAs and their metabolites may function as endogenous angiotensin-converting enzyme and 3-hdroxy-3-methylglutaryl coenzyme A reductase inhibitors, nitric oxide (NO) enhancers, anti-hypertensives, and anti-atherosclerotic molecules. Recent studies revealed that EFAs react with NO to yield respective nitroalkene derivatives that exert cell-signaling actions via ligation and activation of peroxisome proliferator-activated receptors. The metabolism of EFAs is altered in several diseases such as obesity, hypertension, diabetes mellitus, coronary heart disease, schizophrenia, Alzheimer's disease, atherosclerosis, and cancer. Thus, EFAs and their derivatives have varied biological actions and seem to be involved in several physiological and pathological processes. [source] |