Home About us Contact | |||
Several Metabolites (several + metabolite)
Selected AbstractsPharmacokinetics of dipeptidylpeptidase-4 inhibitorsDIABETES OBESITY & METABOLISM, Issue 8 2010A. J. Scheen Type 2 diabetes (T2DM) is a complex disease combining defects in insulin secretion and insulin action. New compounds have been developed for improving glucose-induced insulin secretion and glucose control, without inducing hypoglycaemia or weight gain. Dipeptidylpeptidase-4 (DPP-4) inhibitors are new oral glucose-lowering agents, so-called incretin enhancers, which may be used as monotherapy or in combination with other antidiabetic compounds. Sitagliptin, vildaglipin and saxagliptin are already on the market in many countries, either as single agents or in fixed-dose combined formulations with metformin. Other DPP-4 inhibitors, such as alogliptin and linagliptin, are currently in late phase of development. The present paper summarizes and compares the main pharmacokinetics (PK) properties, that is, absorption, distribution, metabolism and elimination, of these five DPP-4 inhibitors. Available data were obtained in clinical trials performed in healthy young male subjects, patients with T2DM, and patients with either renal insufficiency or hepatic impairment. PK characteristics were generally similar in young healthy subjects and in middle-aged overweight patients with diabetes. All together gliptins have a good oral bioavailability which is not significantly influenced by food intake. PK/pharmacodynamics characteristics, that is, sufficiently prolonged half-life and sustained DPP-4 enzyme inactivation, generally allow one single oral administration per day for the management of T2DM; the only exception is vildagliptin for which a twice-daily administration is recommended because of a shorter half-life. DPP-4 inhibitors are in general not substrates for cytochrome P450 (except saxagliptin that is metabolized via CYP 3A4/A5) and do not act as inducers or inhibitors of this system. Several metabolites have been documented but most of them are inactive; however, the main metabolite of saxagliptin also exerts a significant DPP-4 inhibition and is half as potent as the parent compound. Renal excretion is the most important elimination pathway, except for linagliptin whose metabolism in the liver appears to be predominant. PK properties of gliptins, combined with their good safety profile, explain why no dose adjustment is necessary in elderly patients or in patients with mild to moderate hepatic impairment. As far as patients with renal impairment are concerned, significant increases in drug exposure for sitagliptin and saxagliptin have been reported so that appropriate reductions in daily dosages are recommended according to estimated glomerular filtration rate. The PK characteristics of DPP-4 inhibitors suggest that these compounds are not exposed to a high risk of drug,drug interactions. However, the daily dose of saxagliptin should be reduced when coadministered with potent CYP 3A4 inhibitors. In conclusion, besides their pharmacodynamic properties leading to effective glucose-lowering effect without inducing hypoglycaemia or weight gain, DPP-4 inhibitors show favourable PK properties, which contribute to a good efficacy/safety ratio for the management of T2DM in clinical practice. [source] Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopyNMR IN BIOMEDICINE, Issue 4 2010Beathe Sitter Abstract Absolute quantitative measures of breast cancer tissue metabolites can increase our understanding of biological processes. Electronic REference To access In vivo Concentrations (ERETIC) was applied to high resolution magic angle spinning MR spectroscopy (HR MAS MRS) to quantify metabolites in intact breast cancer samples. The ERETIC signal was calibrated using solutions of creatine and TSP. The largest relative errors of the ERETIC method were 8.4%, compared to 4.4% for the HR MAS MRS method using TSP as a standard. The same MR experimental procedure was applied to intact tissue samples from breast cancer patients with clinically defined good (n,=,13) and poor (n,=,16) prognosis. All samples were examined by histopathology for relative content of different tissue types and proliferation index (MIB-1) after MR analysis. The resulting spectra were analyzed by quantification of tissue metabolites (,-glucose, lactate, glycine, myo-inositol, taurine, glycerophosphocholine, phosphocholine, choline and creatine), by peak area ratios and by principal component analysis. We found a trend toward lower concentrations of glycine in patients with good prognosis (1.1,µmol/g) compared to patients with poor prognosis (1.9,µmol/g, p,=,0.067). Tissue metabolite concentrations (except for ,-glucose) were also found to correlate to the fraction of tumor, connective, fat or glandular tissue by Pearson correlation analysis. Tissue concentrations of ,-glucose correlated to proliferation index (MIB-1) with a negative correlation factor (,0.45, p,=,0.015), consistent with increased energy demand in proliferating tumor cells. By analyzing several metabolites simultaneously, either in ratios or by metabolic profiles analyzed by PCA, we found that tissue metabolites correlate to patients' prognoses and health status five years after surgery. This study shows that the diagnostic and prognostic potential in MR metabolite analysis of breast cancer tissue is greater when combining multiple metabolites (MR Metabolomics). Copyright © 2010 John Wiley & Sons, Ltd. [source] Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae)PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 7 2001Ralf Nauen Abstract Acute oral and contact toxicity tests of imidacloprid, an insecticide acting agonistically on nicotinic acetylcholine receptors (nAChR), to adult honeybees, Apis mellifera L var carnica, were carried out by seven different European research facilities. Results indicated that the 48-h oral LD50 of imidacloprid is between 41 and >81,ng per bee, and the contact LD50 between 49 and 102,ng per bee. The ingested amount of imidacloprid-containing sucrose solution decreased with increasing imidacloprid concentrations and may be attributed to dose-related sub-lethal intoxication symptoms or to antifeedant responses. Some previously reported imidacloprid metabolites occuring at low levels in planta after seed dressing, ie olefine-, 5-OH- and 4,5-OH-imidacloprid, showed lower oral LD50 values (>36, >49 and 159,ng per bee, respectively) compared with the concurrently tested parent molecule (41,ng per bee). The urea metabolite and 6-chloronicotinic acid (6-CNA) exhibited LD50 values of >99,500 and >121,500,ng per bee, respectively. The pharmacological profile of the [3H]imidacloprid binding site in honeybee head membrane preparations is consistent with that anticipated for a nAChR. IC50 values for the displacement of [3H]imidacloprid by several metabolites such as olefine, 5-OH-, 4,5-OH-imidacloprid, urea and 6-CNA were 0.45, 24, 6600, >100,000, and >100,000,nM, respectively. Displacement of [3H]imidacloprid by imidacloprid revealed an IC50 value of 2.9,nM, thus correlating well with the observed acute oral toxicity of the compounds in honeybees. Neurons isolated from the antennal lobe of A mellifera and subjected to whole-cell voltage clamp electrophysiology responded to the application of 100,µM acetylcholine with a fast inward current of between 30 and 1600 pA at ,70,mV clamp potential. Imidacloprid and two of the metabolites (olefine- and 5-OH-imidacloprid) acted agonistically on these neurons, whereas the others did not induce currents at test conencentrations up to 3,mM. The electrophysiological data revealed Hill coefficients of approximately 1, indicating a single binding site responsible for an activation of the receptor and no direct cooperativity or allosteric interaction with a second binding site. © 2001 Society of Chemical Industry [source] Effects of cysteine on the pharmacokinetics of itraconazole in rats with protein-calorie malnutritionBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 2 2003Ae K. Lee Abstract The effects of cysteine on the pharmacokinetics of itraconazole were investigated after intravenous, 20 mg/kg, and oral, 50 mg/kg, administration of the drug to control rats (fed for 4 weeks on 23% casein diet) and rats with PCM (protein-calorie malnutrition, fed for 4 weeks on 5% casein diet) and PCMC (PCM with oral cysteine supplementation, 250 mg/kg, twice daily during the fourth week). After intravenous administration of itraconazole to rats with PCM, the area under the plasma concentration,time curve from time zero to time infinity (AUC) of itraconazole was significantly greater (3580 compared with 2670 and 2980 µg min/ml) than those in control rats and rats with PCMC (the values between control rats and rats with PCMC were not significantly different). The above data suggested that metabolism of itraconazole decreased significantly in rats with PCM due to suppression of hepatic microsomal cytochrome P450 (CYP) 3A23 in the rats. The results could be expected since in rats with PCM, the level of CYP3A23 decreased significantly as compared to control. Itraconazole was reported to be metabolized via CYP3A4 to several metabolites, including hydroxyitraconazole, in human subjects. Human CYP3A4 and rat CYP3A1 (CYP3A23) proteins have 73% homology. By cysteine supplementation (rats with PCMC), the AUC of itraconazole was restored fully to control levels. Copyright © 2003 John Wiley & Sons, Ltd. [source] |