Home About us Contact | |||
Several Lineages (several + lineage)
Selected AbstractsCOALESCENCE IN A METAPOPULATION WITH RECURRENT LOCAL EXTINCTION AND RECOLONIZATIONEVOLUTION, Issue 5 2003John R. Pannell Abstract Many species exist as metapopulations in balance between local population extinction and recolonization. The effect of these processes on average population differentiation, within-deme diversity, and specieswide diversity has been considered previously. In this paper, coalescent simulations of Slatkin's propagule-pool and migrant-pool models are used to characterize the distribution of neutral genetic diversity within demes (,s), diversity in the metapopulation a whole (TTT), the ratio FST= (,t,,S)/,T, Tajima's D statistic, and several ratios of gene-tree branch lengths. Using these distributions, power to detect differences in key metapopulation parameter values is determined under contrasting sampling regimes. The results indicate that it will be difficult to use sequence data from a single locus to detect a history of extinctions and recolonizations in a metapopulation because of high genealogical variance, the loss of diversity due to reductions in effective population size, and the fact that a genealogy of lineages from different demes under Slatkin's model differs from a neutral coalescent only in its time scale. Genetic indices of gene-tree shape that capture the effects of extinction/recolonization on both external branches and the length of the genealogy as a whole will provide the best indication of metapopulation dynamics if several lineages are sampled from several different demes. [source] Fermentative lifestyle in yeasts belonging to the Saccharomyces complexFEBS JOURNAL, Issue 4 2007Annamaria Merico The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory-deficient mitochondrial mutants, so-called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole-genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre-genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite-negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole-genome duplication and led to the modern Saccharomyces cerevisiae yeast. [source] A biomechanical constraint on body mass in terrestrial mammalian predatorsLETHAIA, Issue 4 2008BORIS SORKIN Observations on extant mammals suggest that large body mass is selectively advantageous for a terrestrial predator on large herbivores. Yet, throughout the Cenozoic, some lineages of terrestrial mammalian predators attained greater maximal body masses than others. In order to explain this evolutionary pattern, the following biomechanical constraint on body mass is hypothesized. The stress, set up in the humerus by the bending moment of the peak ground reaction force at maximal running speed, increased with increasing body mass within a given lineage of terrestrial mammalian predators, resulting in a decreasing safety factor for the bone, until a predator could no longer attain the maximal running speed of its smaller relatives. The selective disadvantage of reduced maximal running speed prevented further increase of body mass within the lineage. This hypothesis is tested by examining the scaling of humeral dimensions and estimating maximal body masses in several lineages of terrestrial mammalian predators. Among lineages with otherwise similar postcranial skeletons, those with the more robust humeri at a given body mass attained the greater maximal body masses. Lineages with the longer deltoid ridges/deltopectoral crests of the humeri and/or the more distally located deltoid scars (suggesting the more distal insertions of the humeral flexors) at a given body mass also attained the greater maximal body masses. These results support the existence of the proposed biomechanical constraint, although paleoecological data suggest that some lineages of terrestrial mammalian predators failed to reach the limits, imposed by this constraint, because of the small size of available prey. [source] A Micro/Nanoscale Surface Mechanical Study on Morpho-Functional Changes in Multilineage-Differentiated Human Mesenchymal Stem CellsMACROMOLECULAR BIOSCIENCE, Issue 5 2007Serena Danti Abstract In recent years MSCs have become a very attractive tool in tissue engineering and regenerative medicine because of their ability to be committed along several lineages through chemical or physical stimuli. Nevertheless their therapeutic potential and plasticity are not yet totally understood. This report describes the use of AFM together with conventional microscopies to obtain mechanical information on cell surfaces and deposited extra cellular matrix molecules, after inducing the differentiation of human MSCs towards three typical mesoderm phenotypes. The aim is to correlate morphological, functional, and mechanical aspects of human MSCs to obtain a deeper understanding of their great potential. [source] Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptationsMOLECULAR ECOLOGY, Issue 11 2004SABINE FINK Abstract The phylogeography of the common vole (Microtus arvalis) was examined by analysing mitochondrial DNA (mtDNA) sequence variation in 1044 base pairs (bp) of the cytochrome b (cytb) gene and in 322 bp of the control region (ctr) among 106 individuals from 58 locations. The geographical distribution of four previously recognized cytb evolutionary lineages in Europe was refined and a new lineage was found in southern Germany. All lineages were distributed allopatrically, except in one sample that was probably located in a contact zone. The occurrence of several lineages in the Alps is in keeping with their recent recolonization from distinct sources. The translation of 84 cytb DNA sequences produced 33 distinct proteins with relationships that differed from those of the DNA haplotypes, suggesting that the mtDNA lineages did not diverge in response to selection. In comparison with M. agrestis, a neutrality test detected no overall evidence for selection in the cytb gene, but a closer examination of a structural model showed that evolutionarily conserved and functionally important positions were often affected. A new phylogeographical test of random accumulation of nonsynonymous mutations generated significant results in three lineages. We therefore conclude that the molecular diversity of cytb in M. arvalis is overall the result of the demographic history of the populations, but that there have been several episodes of local adaptation to peculiar environments. [source] Genetic Diversity of Parasitic Dinoflagellates in the Genus Amoebophrya and Its Relationship to Parasite Biology and BiogeographyTHE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2008SUNJU KIM ABSTRACT. We determined 18S rRNA gene sequences of Amoebophrya strains infecting the thecate dinoflagellates Alexandrium affine and Gonyaulax polygramma from Korean coastal waters and compared those data with previously reported sequences of Amoebophrya from cultures, infected cells concentrated from field samples, and environmental 18S rRNA gene sequences obtained from a variety of marine environments. Further, we used these data to examine genetic diversity in Amoebophrya strains relative to geographic origin, host phylogeny, site of infection, and host specificity. In our analyses of known dinoflagellate taxa, the 13 available Amoebophrya sequences clustered together within the dinoflagellates as three groups forming a monophyletic group with high bootstrap support (maximum likelihood, ML: 100%) or a posterior probability (PP) of 1. When the Amoebophrya sequences were analyzed along with environmental sequences associated with Marine Alveolate Group II, nine subgroups formed a monophyletic group with high bootstrap support (ML: 100%) and PP of 1. Sequences known to be from Amoebophrya spp. infecting dinoflagellate hosts were distributed in seven of those subgroups. Despite differences in host species and geographic origin (Korea, United States, and Europe), Amoebophrya strains (Group II) from Gymnodinium instriatum, A. affine, Ceratium tripos (AY208892), Prorocentrum micans, and Ceratium lineatum grouped together by all of our tree construction methods, even after adding the environmental sequences. By contrast, strains within Groups I and III divided into several lineages following inclusion of environmental sequences. While Amoebophrya strains within Group II mostly developed within the host cytoplasm, strains in Groups I and III formed infections inside the host nucleus, a trait that appeared across several of the subgroups. Host specificity varied from moderately to extremely species-specific within groups, including Group II. Taken together, our results imply that genetic diversity in Amoebophrya strains does not always reflect parasite biology or biogeography. [source] Evolutionary history of the bank vole Myodes glareolus: a morphometric perspectiveBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2010RONAN LEDEVIN The bank vole experienced a complex history during the Quaternary. Repeated isolation in glacial refugia led to the differentiation of several lineages in less than 300 000 years. We investigated if such a recent differentiation led to a significant divergence of phenotypic characters between European lineages, which might provide insight into processes of intraspecific differentiation. The size and shape of the first and third upper molars, and first lower molar, of bank voles genetically attributed to different lineages were quantified using an outline analysis of their occlusal surface. The three teeth present similar trends of decreasing size towards high latitudes. This trend, the inverse of Bergmann's rule, is interpreted as the result of a balance between metabolic efficiency and food availability, favouring small body size in cold regions. Molar shape appeared to differ between lineages despite genetic evidence of suture zones. A mosaic pattern of evolution between the different teeth was evidenced. The analysis of such phenotypic features appears as a valuable complement to genetic analyses, providing a complementary insight into evolutionary processes, such as selective pressures, that have driven the differentiation of the lineages. It may further allow the integration of the paleontological dimension of the bank vole phylogeographic history. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 681,694. [source] The evolution of bipedal postures in varanoid lizardsBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009GORDON W. SCHUETT The bipedal posture (BP) and gait of humans are unique evolutionary hallmarks, but similar stances and forms of locomotion have had enormous influences on a range of phylogenetically diverse tetrapods, particularly dinosaurs and birds, and a range of mammalian lineages, including non-human apes. The complex movements involved in bipedalism appear to have modest evolutionary origins, and it is presumed that a stable and erect posture is a prerequisite for erect strides and other bipedal movements. Facultative bipedalism in several lineages of lizards is achieved by running, but some varanid lizards (genus Varanus) exhibit BPs without running. In these cases, BPs (BPstanding) are not used as a form of locomotion; rather, BPstanding is associated with defensive displays, and such postures also probably permit better inspection of the environment. Yet, in other varanids, BPs have been observed only during combat episodes (BPcombat), where both contestants rise together and embrace in the so-called clinch phase. Numerous other species, however, show neither type of BP. Past researchers have commented that only large-bodied varanids exhibit BP, a behaviour that appears to show phylogenetic trends. We termed this idea the King,Green,Pianka (KGP) bipedal hypothesis. In this article, we address two main questions derived from the KGP hypothesis. First, what is the phylogenetic distribution of BP in Varanus and close relatives (varanoids)? Second, is BP positively correlated with the phylogenetic distribution of large body size (e.g. snout,vent length, SVL)? In addition, we asked a related question: do the lengths of the femur and tail show body size-independent adaptive trends in association with BP? Because varanid species that show BPstanding also use these postures during combat (BPcombat), both types of BP were analysed collectively and simply termed BP. Using comparative phylogenetic analyses, the reconstruction of BP required three steps, involving a single gain and two losses. Specifically, BP was widespread in the monophyletic Varanus, and the single gain occurred at the most recent common ancestor of the African clade. The two losses of BP occurred in different clades (Indo-Asian B clade and Indo-Australian Odatria clade). BPs are absent in the sister group to Varanus (Lanthanotus borneensis) and the other outgroup species (Heloderma spp.). Our phylogenetic reconstruction supports the KGP prediction that BP is restricted to large-bodied taxa. Using the Hansen model of adaptive evolution on a limited, but highly relevant morphological dataset (i.e. SVL; femur length, FL; tail length, TL), we demonstrated that these characters were not equivalent in their contribution to the evolution of BP in Varanus. SVL was significantly correlated with BP when modelled in a phylogenetic context, but the model identified random processes as dominant over adaptive evolution, suggesting that a body size threshold might be involved in the evolution of BP. A Brownian motion (BM) model outperformed the selection model in our analysis of relative TL, suggesting that TL and BP evolved independently. The selection model for relative FL outperformed the BM model, indicating that FL and BP share an adaptive history. Our non-phylogenetic analyses involving regression residuals of FL and TL vs. SVL showed no significant correlation between these characters and BP. We suggest that BP in Varanus provides a convergent or analogue model from which to investigate various forms of bipedalism in tetrapod vertebrates, especially other reptiles, such as theropod dinosaurs. Because BPstanding in varanids is possibly an incipient stage to some form of upright locomotion, its inclusion as a general model in evolutionary analyses of bipedalism of vertebrates will probably provide novel and important insights. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 652,663. [source] |