Home About us Contact | |||
Several Cytochrome P450 (several + cytochrome_p450)
Selected AbstractsEffects of genetic polymorphism of cytochrome P450 enzymes on the pharmacokinetics of benzodiazepinesJOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 4 2007T. Fukasawa MD PhD Summary Pharmacogenetic studies have shown that several cytochrome P450 (CYP) enzymes exhibit genetic polymorphisms. Several benzodiazepines (BZPs) are metabolized predominantly or partly by polymorphic CYP2C19 and CYP3A4/5. The pharmacokinetics of diazepam, etizolam, quazepam and desmethylclobazam have been shown to be affected by CYP2C19 polymorphism. The CYP3A5 polymorphism has been reported to affect the pharmacokinetics of alprazolam, but its effect on midazolam kinetics has been inconclusive. For etizolam and desmethylclobazam, some data suggest that CYP2C19 deficiency leads to side-effects or toxicity. For the remaining BZPs the clinical significance of the observed pharmacokinetic changes remains unclear. Further studies on the effects of genetic polymorphisms of CYP enzymes on the pharmacokinetics and pharmacodynamics of BZPs are necessary to guide treatment individualization and optimization. [source] Inhibition of human cytochrome P450 isoforms and NADPH-CYP reductase in vitro by 15 herbal medicines, including Epimedii herbaJOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 1 2006K. H. Liu PhD Summary Objective:, We evaluated the potential of 15 herbal medicines (HMs), commonly used in Korea, to inhibit the catalytic activities of several cytochrome P450 (CYP) isoforms and microsomal NADPH-CYP reductase. Methods:, The abilities of 1,1000 ,g/mL of freeze-dried aqueous extracts of 15 HMs to inhibit phenacetin O -deethylation (CYP1A2), tolbutamide 4-methylhydroxylation (CYP2C9), S -mephenytoin 4,-hydroxylation (CYP2C19), dextromethorphan O -demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), midazolam 1-hydroxylation (CYP3A4) and NADPH-CYP reductase were tested using human liver microsomes. Results:, The HMs Epimedii herba, Glycyrrhizae radix and Leonuri herba inhibited one or more of the CYP isoforms or NADPH-CYP reductase. Of the three HMs, Epimedii herba extracts were the most potent inhibitors of several CYP isoforms (IC50 67·5 ,g/mL for CYP2C19, 104·8 ,g/mL for CYP2E1, 110·9 ,g/mL for CYP2C9, 121·9 ,g/mL for CYP3A4, 157·8 ,g/mL for CYP2D6 and 168·7 ,g/mL for CYP1A2) and NADPH-CYP reductase (IC50 185·9 ,g/mL). Conclusion:, These results suggest that some of the HMs used in Korea have the potential to inhibit CYP isoforms in vitro. Although the plasma concentrations of the active constituents of the HMs were not determined, some herbs could cause clinically significant interactions because the usual doses of those individual herbs are several grams of freeze-dried extracts. Controlled trials to test the significance of these results are necessary. [source] Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymesBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2000L.H. Cohen Abstract Six 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (the present cholesterol-lowering drugs known as statins), lovastatin (L), simvastatin (S), pravastatin (P), fluvastatin (F), atorvastatin (A) and cerivastatin (C) are shown to be potent inhibitors of cholesterol synthesis in human hepatocytes, the target tissue for these drugs in man. All six inhibited in the nM range (IC50 values: 0.2,8.0 nM). As daily used cholesterol-lowering drugs they are likely coadministered with other drugs. While several cytochrome P450 (CYP) enzymes are involved in drug metabolism in the liver and thus play an important role in drug,drug interaction it was investigated which of these enzymes are influenced by the active forms of the six statins. These enzyme activities were studied in human liver microsomal preparations, and in simian and human hepatocytes in primary culture. The following CYP reactions were used: nifedipine aromatization (CYP3A4), testosterone 6,-hydroxylation (CYP3A4), tolbutamide methylhydroxylation (CYP2C9), S -mephenytoin 4-hydroxylation (CYP2C19), bufuralol 1,-hydroxylation (CYP2D6), aniline 4-hydroxylation (CYP2E1), coumarin 7-hydroxylation (CYP2A6) and 7-ethoxyresorufin O -dealkylation (CYP1A1/2). In the human liver microsomes the statins (concentrations up to 400 µM) did not influence the CYP1A1/2 activity and hardly the CYP2A6 and CYP2E1 activities. Except P, the other five statins were stronger inhibitors of the CYP2C19 activity with IC50 values around 200 µM and the same holds for the effect of A, C and F on the CYP2D6 activity. L and S were weaker inhibitors of the latter enzyme activity, whereas P did not influence both activities. About the same was observed for the statin effect on CYP2C9 activity, except that F was a strong inhibitor of this activity (IC50 value: 4 µM). Using the assay of testosterone 6,-hydroxylation the CYP3A4 activity was decreased by L, S and F with IC50 values of about 200 µM and a little more by C and A (IC50 around 100 µM). P had hardly an effect on this activity. To a somewhat less extent the same trend was seen when CYP3A4 activity was measured using nifedipine as substrate. The inhibitory effects observed in microsomes were verified in suspension culture of freshly isolated hepatocytes from Cynomolgus monkey (as a readily available model) and of human hepatocytes. In general the same trends were seen as in the human microsomes, except that in some cases the inhibition of the CYP activity was less, possibly by the induction of the particular CYP enzyme by incubation of the cells with a particular statin. F remained a strong inhibitor of CYP2C9 activity in human and monkey hepatocytes. A induced the CYP2C9 in monkey hepatocytes but was an inhibitor of the CYP2C9 in human hepatocytes. A, S, L and C were moderate inhibitors in both cellular systems of CYP3A4. P was not affecting any of the CYP activities in the three systems studied. It is concluded that different CYP enzymes interact with different statins and therefore differences in between these drugs are to be expected when drug,drug interaction is considered. Copyright © 2000 John Wiley & Sons, Ltd. [source] Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3ABRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 6 2009Sandrine Turpault WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , Numerous cocktails using concurrent administration of several cytochrome P450 (CYP) isoform-selective probe drugs have been reported to investigate drug,drug interactions in vivo. , This approach has several advantages: characterize the inhibitory or induction potential of compounds in development toward the CYP enzymes identified in vitro in an in vivo situation, assess several enzymes in the same trial, and have complete in vivo information about potential CYP-based drug interactions. WHAT THIS STUDY ADDS , This study describes a new cocktail containing five probe drugs that has never been published. , This cocktail can be used to test the effects of a new chemical entity on multiple CYP isoforms in a single clinical study: CYP1A2 (caffeine), CYP2C9 (warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol), and CYP3A (midazolam) and was designed to overcome potential liabilities of other reported cocktails. AIMS To assess the pharmacokinetics (PK) of selective substrates of CYP1A2 (caffeine), CYP2C9 (S-warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol) and CYP3A (midazolam) when administered orally and concurrently as a cocktail relative to the drugs administered alone. METHODS This was an open-label, single-dose, randomized, six-treatment six-period six-sequence William's design study with a wash-out of 7 or 14 days. Thirty healthy male subjects received 100 mg caffeine, 100 mg metoprolol, 0.03 mg kg,1 midazolam, 20 mg omeprazole and 10 mg warfarin individually and in combination (cocktail). Poor metabolizers of CYP2C9, 2C19 and 2D6 were excluded. Plasma samples were obtained up to 48 h for caffeine, metoprolol and omeprazole, 12 h for midazolam, 312 h for warfarin and the cocktail. Three different validated liquid chromatography tandem mass spectrometry methods were used. Noncompartmental PK parameters were calculated. Log-transformed Cmax, AUClast and AUC for each analyte were analysed with a linear mixed effects model with fixed term for treatment, sequence and period, and random term for subject within sequence. Point estimates (90% CI) for treatment ratios (individual/cocktail) were computed for each analyte Cmax, AUClast and AUC. RESULTS There was no PK interaction between the probe drugs when administered in combination as a cocktail, relative to the probes administered alone, as the 90% CI of the PK parameters was within the prespecified bioequivalence limits of 0.80, 1.25. CONCLUSION The lack of interaction between probes indicates that this cocktail could be used to evaluate the potential for multiple drug,drug interactions in vivo. [source] |