Home About us Contact | |||
Set Sampling (set + sampling)
Selected AbstractsRanked Set Sampling: Cost and Optimal Set SizeBIOMETRICS, Issue 4 2002Ramzi W. Nahhas Summary. Mclntyre (1952, Australian Journal of Agricultural Research3, 385,390) introduced ranked set sampling (RSS) as a method for improving estimation of a population mean in settings where sampling and ranking of units from the population are inexpensive when compared with actual measurement of the units. Two of the major factors in the usefulness of RSS are the set size and the relative costs of the various operations of sampling, ranking, and measurement. In this article, we consider ranking error models and cost models that enable us to assess the effect of different cost structures on the optimal set size for RSS. For reasonable cost structures, we find that the optimal RSS set sizes are generally larger than had been anticipated previously. These results will provide a useful tool for determining whether RSS is likely to lead to an improvement over simple random sampling in a given setting and, if so, what RSS set size is best to use in this case. [source] A cost analysis of ranked set sampling to estimate a population meanENVIRONMETRICS, Issue 3 2005Rebecca A. Buchanan Abstract Ranked set sampling (RSS) can be a useful environmental sampling method when measurement costs are high but ranking costs are low. RSS estimates of the population mean can have higher precision than estimates from a simple random sample (SRS) of the same size, leading to potentially lower sampling costs from RSS than from SRS for a given precision. However, RSS introduces ranking costs not present in SRS; these costs must be considered in determining whether RSS is cost effective. We use a simple cost model to determine the minimum ratio of measurement to ranking costs (cost ratio) necessary in order for RSS to be as cost effective as SRS for data from the normal, exponential, and lognormal distributions. We consider both equal and unequal RSS allocations and two types of estimators of the mean: the typical distribution-free (DF) estimator and the best linear unbiased estimator (BLUE). The minimum cost ratio necessary for RSS to be as cost effective as SRS depends on the underlying distribution of the data, as well as the allocation and type of estimator used. Most minimum necessary cost ratios are in the range of 1,6, and are lower for BLUEs than for DF estimators. The higher the prior knowledge of the distribution underlying the data, the lower the minimum necessary cost ratio and the more attractive RSS is over SRS. Copyright © 2005 John Wiley & Sons, Ltd. [source] Parametric estimation for the location parameter for symmetric distributions using moving extremes ranked set sampling with application to trees dataENVIRONMETRICS, Issue 7 2003Mohammad Fraiwan Al-Saleh Abstract A modification of ranked set sampling (RSS) called moving extremes ranked set sampling (MERSS) is considered parametrically, for the location parameter of symmetric distributions. A maximum likelihood estimator (MLE) and a modified MLE are considered and their properties are studied. Their efficiency with respect to the corresponding estimators based on simple random sampling (SRS) are compared for the case of normal distribution. The method is studied under both perfect and imperfect ranking (with error in ranking). It appears that these estimators can be real competitors to the MLE using (SRS). The procedure is illustrated using tree data. Copyright © 2003 John Wiley & Sons, Ltd. [source] Ranked Set Sampling: Cost and Optimal Set SizeBIOMETRICS, Issue 4 2002Ramzi W. Nahhas Summary. Mclntyre (1952, Australian Journal of Agricultural Research3, 385,390) introduced ranked set sampling (RSS) as a method for improving estimation of a population mean in settings where sampling and ranking of units from the population are inexpensive when compared with actual measurement of the units. Two of the major factors in the usefulness of RSS are the set size and the relative costs of the various operations of sampling, ranking, and measurement. In this article, we consider ranking error models and cost models that enable us to assess the effect of different cost structures on the optimal set size for RSS. For reasonable cost structures, we find that the optimal RSS set sizes are generally larger than had been anticipated previously. These results will provide a useful tool for determining whether RSS is likely to lead to an improvement over simple random sampling in a given setting and, if so, what RSS set size is best to use in this case. [source] |