Home About us Contact | |||
Sensu Stricto Species (sensu + stricto_species)
Selected AbstractsEvidence for multiple interspecific hybridization in Saccharomyces sensu stricto speciesFEMS YEAST RESEARCH, Issue 4 2002Miguel de Barros Lopes Abstract Fluorescent amplified fragment length polymorphism analysis demonstrates a high level of gene exchange between Saccharomyces sensu stricto species, with some strains having undergone multiple interspecific hybridization events with subsequent changes in genome complexity. Two lager strains were shown to be hybrids between Saccharomyces cerevisiae and the alloploid species Saccharomyces pastorianus. The genome structure of CBS 380T, the type strain of Saccharomyces bayanus, is also consistent with S. pastorianus gene transfer. The results indicate that the cider yeast, CID1, possesses nuclear DNA from three separate species. Mating experiments show that there are no barriers to interspecific conjugation of haploid cells. Furthermore, the allopolyploid strains were able to undergo further hybridizations with other Saccharomyces sensu stricto yeasts. These results demonstrate that introgression between the Saccharomyces sensu stricto species is likely. [source] Babesiosis Caused by a Large Babesia Species in 7 Immunocompromised DogsJOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 1 2010L.E. Sikorski Background: A large unnamed Babesia species was detected in a dog with lymphoma. It was unknown if this was an underrecognized pathogen. Objective: Report the historical and clinicopathologic findings in 7 dogs with babesiosis caused by a large unnamed Babesia species characterize the 18S ribosomal ribonucleic acid (rRNA) genes. Animals: Seven immunocompromised dogs from which the Babesia was isolated. Methods: Retrospective case review. Cases were identified by a diagnostic laboratory, the attending clinicians were contacted and the medical records were reviewed. The Babesia sp. 18S rRNA genes were amplified and sequenced. Results: Six of 7 dogs had been splenectomized; the remaining dog was receiving oncolytic drugs. Lethargy, anorexia, fever, and pigmenturia were reported in 6/7, 6/7, 4/7, and 3/7 dogs. Laboratory findings included mild anemia (7/7) and severe thrombocytopenia (6/7). Polymerase chain reaction (PCR) assays used to detect Babesia sensu stricto species were all positive, but specific PCR assays for Babesia canis and Babesia gibsoni were negative in all dogs. The 18S rRNA gene sequences were determined to be identical to a large unnamed Babesia sp. previously isolated. Cross-reactive antibodies against other Babesia spp. were not always detectable. Five dogs were treated with imidocarb dipropionate and 1 dog with atovaquone/azithromycin; some favorable responses were noted. The remaining dog was untreated and remained a clinically stable carrier. Conclusions and Clinical Importance: Dogs with pigmenturia, anemia, and thrombocytopenia should be tested for Babesia sp. by PCR. Serology is not sufficient for diagnosis of this Babesia sp. Asplenia, chemotherapy, or both might represent risk factors for persistent infection, illness, or both. [source] Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianusLETTERS IN APPLIED MICROBIOLOGY, Issue 2 2010G.V. De Melo Pereira Abstract Aim:, To develop species-specific primers capable of distinguishing between three important yeast species in alcoholic fermentation: Saccharomyces bayanus, Saccharomyces cerevisiae and Saccharomyces pastorianus. Methods and Results:, Two sets of primers with sequences complementary to the HO genes from Saccharomyces sensu stricto species were used. The use of the ScHO primers produced a single amplificon of c. 400 or 300 bp with species S. cerevisiae and S. pastorianus, respectively. The second pair of primers (LgHO) was also constructed, within the HO gene, composed of perfectly conserved sequences common for S. bayanus species, which generate amplicon with 700 bp. No amplification product was observed in the DNA samples from non- Saccharomyces yeasts. Saccharomyces species have also been characterized via electrophoretic karyotyping using pulsed-field gel electrophoresis to demonstrate chromosomal polymorphisms and to determine the evolutionary distances between these species. Conclusions:, We conclude that our novel species-specific primers could be used to rapidly and accurately identify of the Saccharomyces species most commonly involved in fermentation processes using a PCR-based assay. Significance and Impact of the Study:, The method may be used for routine identification of the most common Saccharomyces sensu stricto yeasts involved in industrial fermentation processes in less than 3 h. [source] |