Home About us Contact | |||
Sensory Neurons (sensory + neuron)
Kinds of Sensory Neurons Selected AbstractsMULTIPLE LEVELS OF SENSORY INTEGRATION IN THE INTRINSIC SENSORY NEURONS OF THE ENTERIC NERVOUS SYSTEMCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2004Paul P Bertrand SUMMARY 1.,The enteric nervous system (ENS) is present in the wall of the gastrointestinal tract and contains all the functional classes of neuron required for complete reflex arcs. One of the most important and intriguing classes of neuron is that responsive to sensory stimuli: sensory neurons with cell bodies intrinsic to the ENS. 2.,These neurons have three outstanding and interrelated features: (i) reciprocal connections with each other; (ii) a slow excitatory post-synaptic potential (EPSP) resulting from high-speed firing in other sensory neurons; and (iii) a large after-hyperpolarizing potential (AHP) at the soma. Slow EPSP depolarize the cell body, generate action potentials (APs) and reduce the AHP. Conversely, the AHP limits the firing rate and, hence, reduces transmission of slow EPSP. 3.,Processing of sensory information starts at the input terminals as different patterns of APs depending on the sensory modality and recent sensory history. At the soma, the ability to fire APs and, hence, drive outputs is also strongly determined by the recent firing history of the neuron (through the AHP) and network activity (through the slow EPSP). Positive feedback within the population of intrinsic sensory neurons means that the network is able to drive outputs well beyond the duration of the stimuli that triggered them. 4.,Thus, sensory input and subsequent reflex generation are integrated over several hierarchical levels within the network on intrinsic sensory neurons. [source] Capsaicin-Sensitive Sensory Neurons Contribute to the Maintenance of Trabecular Bone Integrity,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2005Sarah C Offley Abstract This investigation used capsaicin to selectively lesion unmyelinated sensory neurons in rats. Neuronal lesioning induced a loss of trabecular integrity, reduced bone mass and strength, and depleted neuropeptides in nerve and bone. These data suggest that capsaicin-sensitive sensory nerves contribute to trabecular bone integrity. Introduction: Familial dysautomia is an autosomal recessive disease in which patients suffer from unmyelinated sensory neuron loss, reduced BMD, and frequent fractures. It has been proposed that the loss of neurotransmitters synthesized by unmyelinated neurons adversely affects bone integrity in this hereditary syndrome. The purpose of this study was to determine whether small sensory neurons are required for the maintenance of bone integrity in rats. Materials and Methods: Ten-month-old male Sprague-Dawley rats were treated with either capsaicin or vehicle. In vivo DXA scanning and ,CT scanning, and histomorphometry were used to evaluate BMD, structure, and cellular activity. Bone strength was measured in distal femoral sections. Body weight and gastrocnemius/soleus weights were measured and spontaneous locomotor activity was monitored. Peroneal nerve morphometry was evaluated using light and electron microscopy. Substance P and calcitonin gene-related peptide (CGRP) content in the sciatic nerve and proximal tibia were determined by enzyme immunoassay (EIA). Substance P signaling was measured using a sciatic nerve stimulation extravasation assay. Results: Four weeks after capsaicin treatment, there was a loss of BMD in the metaphyses of the tibia and femur. In the proximal tibia, the osteoclast number and surface increased, osteoblast activity and bone formation were impaired, and trabecular bone volume and connectivity were diminished. There was also a loss of bone strength in the distal femur. No changes occurred in body weight, 24-h grid-crossing activity, weight bearing, or muscle mass after capsaicin treatment, indicating that skeletal unloading did not contribute to the loss of bone integrity. Capsaicin treatment destroyed 57% of the unmyelinated sensory axons, reduced the substance P and CGRP content in the sciatic nerve and proximal tibia, and inhibited neurogenic extravasation. Conclusion: These results support the hypothesis that capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. Capsaicin-sensitive neurons have efferent functions in the tissues they innervate, effects mediated by transmitters released from the peripheral nerve terminals. We postulate that the deleterious effects of capsaicin treatment on trabecular bone are mediated by reductions in local neurotransmitter content and release. [source] Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neuronsCYTOSKELETON, Issue 1 2004Saad A. Haque Abstract Terminally postmitotic neurons continue to express many of the kinesin-related proteins known to configure microtubules during mitosis. Drugs that inhibit these kinesins are being developed as anti-cancer agents with the hope that they will inhibit proliferation of tumor cells without having adverse effects on the nervous system. The prototype, termed monastrol, inhibits the kinesin known as Eg5, which is essential for maintaining separation of the half-spindles. Eg5 is also highly expressed in neurons, particularly during development. Exposure of cultured sympathetic neurons to monastrol for a few hours increased both the number and the growth rate of the axons. With additional time, the overall lengths of the axons were indistinguishable from controls. Sensory neurons showed a similar short-term increase in axonal growth rate. However, prolonged exposure resulted in shorter axons, suggesting that sensory neurons may be more sensitive to toxic effects of the drug. Nevertheless, the overall health of the cultures was still far more robust than cultures treated with taxol, a drug commonly used for anti-cancer therapy. On the basis of these results, we conclude that Eg5 normally generates forces that oppose axonal growth, presumably by partially suppressing the forward advance of microtubules. We speculate that local regulation of Eg5 could be a means by which neurons coordinate rapid bursts of axonal growth with appropriate environmental cues. The comparatively modest toxic effects on the neurons over time are a hopeful sign for clinicians interested in using anti-Eg5 drugs for cancer therapy. Cell Motil. Cytoskeleton 58:10,16, 2004. © 2004 Wiley-Liss, Inc. [source] Neurochemical regulation of swallowing reflex in guinea pigsGERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 1-2 2001Yu X Jia Background: Most peripheral afferent fibers involved in swallowing travel through the glossopharyngeal and vagus nerves and terminate in the nucleus of the tractus solitarius (NTS) and nodose ganglion (NG). Sensory neurons within the NTS and NG contain several neurotransmitters, including acetylcholine, histamine, serotonin and dopamine. The roles of these four neurotransmitters were investigated. Methods: The effects of atropine (muscarinic cholinergic receptor antagonist); pyrilamine maleate (PM, histamine H1 receptor antagonist); cimetidine (histamine H2 receptor antagonist); 8-hydroxy-2-(di- n -propylamino)-tetralin (8-OH-DPAT, specific 5-HT1A receptor agonist); and selective dopamine D1 receptor antagonist (Sch-23390) on the number of swallows elicited by distilled water in anesthetized guinea pigs were investigated. Results: Atropine (0.2 mg/kg) inhibited swallowing by approximately 70%; PM (30 mg/kg) inhibited swallowing by approximately 60%; cimetidine (30 mg/kg) inhibited swallowing by approximately 52.9% and Sch-23390 (chronic treatment) inhibited swallowing by approximately 40%. In contrast, 8-OH-DPAT did not alter the number of swallows. Chronic pretreatment of Sch-23390 markedly decreased the substance P (SP) content in the pharyngeal mucosa and the esophagus. Conclusion: These findings indicate that acetylcholine, histamine and dopamine are involved in the regulation of the swallowing reflex, whereas it is unlikely that serotonin is involved. [source] Thalamic sensitization transforms localized pain into widespread allodyniaANNALS OF NEUROLOGY, Issue 1 2010Rami Burstein PhD Objective Focal somatic pain can evolve into widespread hypersensitivity to nonpainful and painful skin stimuli (allodynia and hyperalgesia, respectively). We hypothesized that transformation of headache into whole-body allodynia/hyperalgesia during a migraine attack is mediated by sensitization of thalamic neurons that process converging sensory impulses from the cranial meninges and extracephalic skin. Methods Extracephalic allodynia was assessed using single unit recording of thalamic trigeminovascular neurons in rats and contrast analysis of blood oxygenation level-dependent (BOLD) signals registered in functional magnetic resonance imaging (fMRI) scans of patients exhibiting extracephalic allodynia. Results Sensory neurons in the rat posterior thalamus that were activated and sensitized by chemical stimulation of the cranial dura exhibited long-lasting hyperexcitability to innocuous (brush, pressure) and noxious (pinch, heat) stimulation of the paws. Innocuous, extracephalic skin stimuli that did not produce neuronal firing at baseline (eg, brush) became as effective as noxious stimuli (eg, pinch) in eliciting large bouts of neuronal firing after sensitization was established. In migraine patients, fMRI assessment of BOLD signals showed that brush and heat stimulation at the skin of the dorsum of the hand produced larger BOLD responses in the posterior thalamus of subjects undergoing a migraine attack with extracephalic allodynia than the corresponding responses registered when the same patients were free of migraine and allodynia. Interpretation We propose that the spreading of multimodal allodynia and hyperalgesia beyond the locus of migraine headache is mediated by sensitized thalamic neurons that process nociceptive information from the cranial meninges together with sensory information from the skin of the scalp, face, body, and limbs. ANN NEUROL 2010 [source] Olfactory sensory axon growth and branching is influenced by sonic hedgehogDEVELOPMENTAL DYNAMICS, Issue 7 2009Qizhi Gong Abstract Olfactory sensory neuron (OSN) axons extend from the olfactory epithelium to the olfactory bulb without branching until they reach their target region, the glomerulus. In this report, we present evidence to support the involvement of sonic hedgehog in promoting rat olfactory sensory axons to branch and to enter into the glomerulus. Sonic hedgehog (Shh) protein is detected in the glomeruli of the olfactory bulb, whereas its transcript is expressed in the mitral and tufted cells, suggesting that Shh in the glomeruli is produced by mitral and tufted cells. In primary OSN cultures, Shh-N peptide promotes olfactory axon branching. When Shh function is neutralized in vivo by its antibody, growth of newly generated OSN axons into the glomeruli is vastly reduced. Developmental Dynamics 238:1768,1776, 2009. © 2009 Wiley-Liss, Inc. [source] A common gene exclusion mechanism used by two chemosensory systemsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2009Luca Capello Abstract Sensory coding strategies within vertebrates involve the expression of a limited number of receptor types per sensory cell. In mice, each vomeronasal sensory neuron transcribes monoallelically a single V1R pheromone receptor gene, chosen from a large V1R repertoire. The nature of the signals leading to this strict receptor expression is unknown, but is apparently based on a negative feedback mechanism initiated by the transcription of the first randomly chosen functional V1R gene. We show, in vivo, that the genetic replacement of the V1rb2 pheromone receptor coding sequence by an unrelated one from the odorant receptor gene M71 maintains gene exclusion. The expression of this exogenous odorant receptor in vomeronasal neurons does not trigger the transcription of odorant receptor-associated signalling molecules. These results strongly suggest that despite the different odorant and vomeronasal receptor expression sites, function and transduction cascades, a common mechanism is used by these chemoreceptors to regulate their transcription. [source] Olfactory ensheathing cell membrane properties are shaped by connectivityGLIA, Issue 6 2010Lorena Rela Abstract Olfactory ensheathing cells (OECs) have been repeatedly implicated in mediating plasticity, particularly in situ in the olfactory nerve in which they support the extension of olfactory sensory neuron (OSN) axons from the olfactory epithelium to the olfactory bulb (OB). OECs are specialized glia whose processes surround OSN axon fascicles within the olfactory nerve and across the OB surface. Despite their purported importance in promoting axon extension, and following transplants, little is known about either morphology or biophysical properties of OECs in situ. In particular, cell,cell interactions that may influence OEC function are largely unexplored. Here, we studied OEC connectivity and morphology in slice preparations, preserving tissue structure and cell,cell interactions. Our analyses showed that OECs form a matrix of cellular projections surrounding axons, unique among glia, and express high levels of connexin-43. Lucifer Yellow injections revealed selective dye coupling among small subgroups of OECs. Two types of OECs were biophysically distinguished with whole-cell voltage-clamp recordings: (1) with low-input resistance (Ri), linear current profiles, and frequently dye coupled; and (2) with high Ri, nonlinear current profiles, and infrequent dye coupling. Pharmacological blockade of gap junctions changed OEC membrane properties such that linear OECs became nonlinear. Double recordings indicated that the appearance of the nonlinear current profile was associated with the loss of electrical coupling between OECs. We conclude that the diversity of OEC current profiles can be explained by differences in gap-junction connectivity and discuss implications of this diversity for OEC influences on axon growth and excitability. © 2009 Wiley-Liss, Inc. [source] Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins,MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2010Juan A. Montańo Abstract Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and A, nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity. Microsc. Res. Tech. 2010. © 2009 Wiley-Liss, Inc. [source] Recent advances in enteric neurobiology: mechanosensitive interneuronsNEUROGASTROENTEROLOGY & MOTILITY, Issue 11 2007T. K. Smith Abstract, Until recently, it was generally assumed that the only intrinsic sensory neuron, or primary afferent neuron, in the gut was the after-hyperpolarizing AH/Type II neuron. AH neurons excited by local chemical and mechanical stimulation of the mucosa appear to be necessary for activating the peristaltic reflex (oral excitation and anal inhibition of the muscle layers) and anally propagating ring like contractions (peristaltic waves) that depend upon smooth muscle tone. However, our recent findings in the guinea-pig distal colon suggest that different neurochemical classes of interneuron in the colon are also mechanosensitive in that they respond directly to changes in muscle length, rather than muscle tone or tension. These interneurons have electrophysiological properties consistent with myenteric S-neurons. Ascending and descending interneurons respond directly to circumferential stretch by generating an ongoing polarized peristaltic reflex activity (oral excitatory and anal inhibitory junction potentials) in the muscle for as long as the stimulus is maintained. Some descending (nitric oxide synthase +ve) interneurons, on the other hand, appear to respond directly to longitudinal stretch and are involved in accommodation and slow transit of faecal pellets down the colon. This review will present recent evidence that suggests some myenteric S interneurons, in addition to AH neurons, behave as intrinsic sensory neurons. [source] Wnt/frizzled family members mediate olfactory sensory neuron axon extensionTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2008Diego J. Rodriguez-Gil Abstract A comprehensive model has yet to emerge, but it seems likely that numerous mechanisms contribute to the specificity of olfactory sensory neuron (OSN) axon innervation of the olfactory bulb. Elsewhere in the nervous system the Wnt/Fz family has been implicated in patterning of anterior-posterior axes, cell type specification, cell proliferation, and axon guidance. Because of our work describing cadherin-catenin family member expression in the primary olfactory pathway, and because mechanisms of Wnt-Fz interactions can depend in part on catenins, we were encouraged to explore Wnt-Fz expression and function in OSN axon extension. Here, we show that OSNs express Fz-1, Fz-3, and Wnt-5a, whereas olfactory ensheathing cells (OECs) express Wnt-4. Fz-7 is also expressed in the olfactory nerve by cells that delineate large axon fascicles, but are negative for OEC markers. Fz-1 showed a developmental downregulation. However, in adults it is expressed at different levels across the olfactory epithelium and in restricted glomeruli across the olfactory bulb, suggesting an important role in the formation and maintenance of OSN connections to the olfactory bulb. Reporter TOPGAL mice demonstrated that some OECs located in the inner olfactory nerve layer can respond to Wnt ligands. Of further interest, we show here with in vitro assays that Wnt-5a increases OSN axon outgrowth and alters growth cone morphology. Our data point to a key role for Wnt/Fz molecules in the development of the mouse olfactory system, providing complementary mechanisms required for OSN axon extension and coalescence. J. Comp. Neurol. 511:301,317, 2008. © 2008 Wiley-Liss, Inc. [source] Activation of the transient receptor potential vanilloid-1 (TRPV1) channel opens the gate for pain reliefBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2008G Jancsó Pharmacological modulation of the transient receptor potential vanilloid-1 (TRPV1) receptor function offers a promising means of producing pain relief at the level of the primary sensory neuron. In this issue of the BJP, the pharmacological approaches and the available experimental data that focus on the TRPV1 receptor to achieve therapeutically useful alleviation of pain and inflammation are reviewed. The potentials to inactivate TRPV1 receptor function by site- and modality-specific TRPV1 antagonists, uncompetitive TRPV1 blockers and drugs interfering with TRPV1 sensitization, are evaluated. A crucial issue of producing pain relief at the level of the nocisensor remains whether it can be achieved solely through inactivation of the TRPV1 receptor or TRPV1 agonist-induced defunctionalization of the whole primary afferent neuron is required. The accumulated evidence indicates that both pharmacological modulation of the intracellular trafficking of the TRPV1 receptor and defunctionalization of the nocisensors by TRPV1 agonists are promising novel approaches to tame the TRPV1 receptor. British Journal of Pharmacology (2008) 155, 1139,1141; doi:fn1; published online 10 November 2008 [source] Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neuronsCYTOSKELETON, Issue 1 2004Saad A. Haque Abstract Terminally postmitotic neurons continue to express many of the kinesin-related proteins known to configure microtubules during mitosis. Drugs that inhibit these kinesins are being developed as anti-cancer agents with the hope that they will inhibit proliferation of tumor cells without having adverse effects on the nervous system. The prototype, termed monastrol, inhibits the kinesin known as Eg5, which is essential for maintaining separation of the half-spindles. Eg5 is also highly expressed in neurons, particularly during development. Exposure of cultured sympathetic neurons to monastrol for a few hours increased both the number and the growth rate of the axons. With additional time, the overall lengths of the axons were indistinguishable from controls. Sensory neurons showed a similar short-term increase in axonal growth rate. However, prolonged exposure resulted in shorter axons, suggesting that sensory neurons may be more sensitive to toxic effects of the drug. Nevertheless, the overall health of the cultures was still far more robust than cultures treated with taxol, a drug commonly used for anti-cancer therapy. On the basis of these results, we conclude that Eg5 normally generates forces that oppose axonal growth, presumably by partially suppressing the forward advance of microtubules. We speculate that local regulation of Eg5 could be a means by which neurons coordinate rapid bursts of axonal growth with appropriate environmental cues. The comparatively modest toxic effects on the neurons over time are a hopeful sign for clinicians interested in using anti-Eg5 drugs for cancer therapy. Cell Motil. Cytoskeleton 58:10,16, 2004. © 2004 Wiley-Liss, Inc. [source] Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: Roles of Contactin and notochord-derived chondroitin sulfate proteoglycansDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2005Naoko Fujita An immunoglobulin superfamily neuronal adhesion molecule, Contactin, has been implicated in axon guidance of spinal sensory neurons in Xenopus embryos. To identify the guidance signaling molecules that Contactin recognizes in tailbud embryos, an in situ binding assay was performed using recombinant Contactin-alkaline phosphatase fusion protein (Contactin-AP) as a probe. In the assay of whole-mount or sectioned embryos, Contactin-AP specifically bound to the notochord and its proximal regions. This binding was completely blocked by either digestion of embryo sections with chondroitinase ABC or pretreatment of Contactin-AP with chondroitin sulfate A. When the spinal cord and the notochord explants were co-cultured in collagen gel, growing Contactin-positive spinal axons were repelled by notochord-derived repulsive activity. This repulsive activity was abolished by the addition of either a monoclonal anti-Contactin antibody, chondroitin sulfate A or chondroitinase ABC to the culture medium. An antibody that recognizes chondroitin sulfate A and C labeled immunohistochemically the notochord in embryo sections and the collagen gel matrix around the cultured notochord explant. Addition of chondroitinase ABC into the culture eliminated the immunoreactivity in the gel matrix. These results suggest that the notochord-derived chondroitin sulfate proteoglycan acts as a repulsive signaling molecule that is recognized by Contactin on spinal sensory axons. [source] The formation of the superior and jugular ganglia: Insights into the generation of sensory neurons by the neural crestDEVELOPMENTAL DYNAMICS, Issue 2 2010Hannah Thompson Abstract The superior and jugular ganglia (S/JG) are the proximal ganglia of the IXth and Xth cranial nerves and the sensory neurons of these ganglia are neural crest derived. However, it has been unclear the extent to which their differentiation resembles that of the Dorsal Root Ganglia (DRGs). In the DRGs, neural crest cells undergo neuronal differentiation just after the onset of migration and there is evidence suggesting that these cells are pre-specified towards a sensory fate. We have analysed sensory neuronal differentiation in the S/JG. We show, in keeping with previous studies, that neuronal differentiation initiates long after the cessation of neural crest migration. We also find no evidence for the existence of migratory neural crest cells pre-specified towards a sensory phenotype prior to ganglion formation. Rather our results suggest that sensory neuronal differentiation in the S/JG is the result of localised spatiotemporal cues. Developmental Dynamics 239:439,445, 2010. © 2009 Wiley-Liss, Inc. [source] Transcriptional control of Rohon-Beard sensory neuron development at the neural plate borderDEVELOPMENTAL DYNAMICS, Issue 4 2009Christy Cortez Rossi Abstract Rohon-Beard (RB) mechanosensory neurons are among the first sensory neurons to develop, and the process by which they adopt their fate is not completely understood. RBs form at the neural plate border (NPB), the junction between neural and epidermal ectoderm, and require the transcription factor prdm1a. Here, we show that prior to RB differentiation, prdm1a overlaps extensively with the epidermal marker dlx3b but shows little overlap with the neuroectodermal markers sox3 and sox19a. Birthdating analysis reveals that the majority of RBs are born during gastrulation in zebrafish, suggesting that it is during this period that RBs become specified. Expression analysis in prdm1a and neurogenin1 mutant and dlx3b/dlx4b morpholino-injected embryos suggests that prdm1a is upstream of dlx3b, dlx4b, and neurogenin1 at the NPB. mRNA for neurogenin1 or dlx3b/dlx4b can rescue the lack of RBs in prdm1a mutants. Based on these data, we suggest a preliminary gene regulatory network for RB development. Developmental Dynamics 238:931,943, 2009. © 2009 Wiley-Liss, Inc. [source] Molecular characterization of conditionally immortalized cell lines derived from mouse early embryonic inner earDEVELOPMENTAL DYNAMICS, Issue 4 2004John A. Germiller Abstract Inner ear sensory hair cells (HCs), supporting cells (SCs), and sensory neurons (SNs) are hypothesized to develop from common progenitors in the early embryonic otocyst. Because little is known about the molecular signals that control this lineage specification, we derived a model system of early otic development: conditionally immortalized otocyst (IMO) cell lines from the embryonic day 9.5 Immortomouse. This age is the earliest stage at which the otocyst can easily be separated from surrounding mesenchymal, nervous system, and epithelial cells. At 9.5 days post coitum, there are still pluripotent cells in the otocyst, allowing for the eventual identification of both SN and HC precursors,and possibly an elusive inner ear stem cell. Cell lines derived from primitive precursor cells can also be used as blank canvases for transfections of genes that can affect lineage decisions as the cells differentiate. It is important, therefore, to characterize the "baseline state" of these cell lines in as much detail as possible. We characterized seven representative "precursor-like" IMO cell populations and the uncloned IMO cells, before cell sorting, at the molecular level by polymerase chain reaction (PCR) and immunocytochemistry (IHC), and one line (IMO-2B1) in detail by real-time quantitative PCR and IHC. Many of the phenotypic markers characteristic of differentiated HCs or SCs were detected in IMO-2B1 proliferating cells, as well as during differentiation for up to 30 days in culture. These IMO cell lines represent a unique model system for studying early stages of inner ear development and determining the consequences of affecting key molecular events in their differentiation. Developmental Dynamics 231:815,827, 2004. © 2004 Wiley-Liss, Inc. [source] Induction of neurogenin-1 expression by sonic hedgehog: Its role in development of trigeminal sensory neuronsDEVELOPMENTAL DYNAMICS, Issue 4 2003Mitsunori Ota Abstract We have examined the roles of signaling molecules in the mechanisms underlying the induction of neurogenin (ngn)-1 expression. ngn-1 is a basic helix-loop-helix (bHLH) transcription factor, which is essential for the specification of trigeminal sensory neurons. Semiquantitative reverse transcriptase-polymerase chain reaction using cranial explants in organ cultures showed that sonic hedgehog (Shh) promotes ngn-1 expression. This promoting activity was not observed in other signaling molecules examined. The promotion of ngn-1 expression by Shh, furthermore, was inhibited by cyclopamine, a specific inhibitor of Shh signaling. Shh did not affect the expression of ngn-2, a bHLH transcription factor that plays an important role in the specification of epibranchial placode-derived sensory neurons. The expression levels of ngn-1 and ngn-2 decreased after fibroblast growth factor-2 treatment. These results suggest that Shh induces ngn-1 expression specifically and that expression of ngn-1 and ngn-2 is regulated by different mechanisms. The induction of ngn-1 expression by Shh suggests that this signaling molecule participates in the specification of trigeminal sensory neurons. We therefore examined the effect of Shh on the development of these neurons. Immunostaining using anti,ngn-1 demonstrated that Shh promotes ngn-1 expression in trigeminal neural crest cells. Trigeminal neural crest cells are derived from the posterior mesencephalon and the most-anterior rhombencephalon, and they contain a subset of precursors of trigeminal sensory neurons. Moreover, a subpopulation of trigeminal neural crest cells expressed the Shh receptor Patched. The number of cells that express Brn3a, a POU-domain transcription factor that plays an important role in differentiation of sensory neurons, also increased with Shh treatment. Our data suggest that Shh signaling is involved in the specification of trigeminal sensory neurons through the induction of ngn-1 expression. Furthermore, Shh promotes the differentiation of neural crest cells into trigeminal sensory neurons. Developmental Dynamics 227:554,551, 2003. © 2003 Wiley-Liss, Inc. [source] Expression of the ETS transcription factor ER81 in the developing chick and mouse hindbrainDEVELOPMENTAL DYNAMICS, Issue 3 2002Yan Zhu Abstract ER81 is an ETS domain-containing transcription factor, which is expressed in various developing tissues and organs of the embryo and in pools of developing spinal motor neurons and proprioceptive sensory neurons. Analysis of mice lacking ER81 function showed that this gene played an important role in the establishment of sensory-motor circuitry in the spinal cord. Here, we investigate the expression pattern of er81 in the hindbrain of both chick and mouse embryos. We find that er81 is expressed in a subpopulation of inferior olive neurons, which send their projections to the caudal cerebellum. © 2002 Wiley-Liss, Inc. [source] MafA transcription factor identifies the early ret-expressing sensory neuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2010Laure Lecoin Abstract Dorsal root ganglia proceed from the coalescence of cell bodies of sensory neurons, which have migrated dorsoventrally from the delaminating neural crest. They are composed of different neuronal subtypes with specific sensory functions, including nociception, thermal sensation, proprioception, and mechanosensation. In contrast to proprioceptors and thermonociceptors, little is known about the molecular mechanisms governing the early commitment and later differentiation into mechanosensitive neurons. This is mainly due to the absence of specific molecular markers for this particular cell type. Using knockout mice, we identified the bZIP transcription factor MafA as the first specific marker of a subpopulation of "early c-ret" positive neurons characterized by medium-to-large diameters. This marker will allow further functional characterization of these neurons. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:485,497, 2010 [source] ,-Dystroglycan is essential for the induction of Egr3, a transcription factor important in muscle spindle formationDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2010Stacey Williams Abstract Muscle spindle fibers are specialized stretch receptors that allow the perception and coordination of limb movement. The differentiation of these specialized structures is initiated by signals derived from the in growing Ia sensory neurons during development. While the direct molecular signaling mechanisms between sensory neurons and developing muscle at nascent spindle fibers have been well documented in past studies the roles of muscle basal lamina components on this process have not previously been described. As such, our initial experiments addressed potential roles for agrin (AGRN) and laminin (LN) in the expression of the transcription factor Egr3. Levels of Egr3 were monitored using immunoblot analysis and both basal lamina molecules proved effective in inducing Erg3 expression. Previous work had established neuregulin (NRG) as a critical signaling component in spindle fiber development so blocking experiments with NRG and ErbB inhibitors were then used to determine if LN-induced Egr3 expression was occurring as a result of NRG-ErbB signaling and not via other, novel pathway. Inhibiting signaling through this pathway did indeed reduce the expression of Egr3. Finally, we looked at ,-dystrogylcan, a shared receptor for AGRN and LN at neuromuscular junctions. Using a ,-dystroglycan (,-DG) silenced muscle cell line and an anti-,-DG antibody we attempted to block basal lamina/,-DG interactions. Again, and in both instances, Egr3 expression was significantly decreased. Taken together, analysis of the results from these experiments revealed that indeed AGRN, LN, and ,-DG influence Egr3 levels and therefore may play an important role in spindle fiber differentiation. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70:498,507, 2010 [source] The proto-oncogene BCL6 promotes survival of olfactory sensory neuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2010Joji M. Otaki Abstract For the mammalian olfactory epithelium to continually detect odorant, neuronal survival, apoptosis, and regeneration must be coordinated. Here, we showed that the proto-oncogene BCL6, which encodes a transcriptional repressor required for lymphocyte terminal differentiation, contributes to the survival of olfactory sensory neurons (OSNs). In the olfactory epithelia of the BCL6 null mutant mice, many OSNs were positive for both OMP and GAP43. The epithelium was relatively thinner, showing many apoptotic signals. These characters were phenotypically similar to those of the wild-type mice treated with nasal lectin irrigation, which acutely induces apoptosis of OSNs. Odorant receptors were expressed normally in the epithelia of the mutant mice, and their overall expression profile based on DNA microarray analyses was roughly similar to that of the apoptosis-induced olfactory epithelia of the wild-type mice. Experimental increase of BCL6 together with green fluorescent protein in OSNs using adenovirus-mediated gene transfer made the epifluorescence last longer than the control fluorescence without exogenous BCL6 after the nasal lectin irrigation, indicating that BCL6 made the infected neurons survive longer. We conclude that BCL6 plays an active role in the survival of OSNs as an anti-apoptotic factor and confers immature OSNs enough time to fully differentiate into mature ones. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 424-435, 2010 [source] Developmental experience alters information coding in auditory midbrain and forebrain neuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2010Sarah M.N. Woolley Abstract In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information (MI), response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. MI quantifies a response's capacity to encode information about a stimulus. In midbrain and forebrain neurons, MI was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. MI did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and MI were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 235,252, 2010. [source] Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryosDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2009Thomas Pietri Abstract Characterizing connectivity in the spinal cord of zebrafish embryos is not only prerequisite to understanding the development of locomotion, but is also necessary for maximizing the potential of genetic studies of circuit formation in this model system. During their first day of development, zebrafish embryos show two simple motor behaviors. First, they coil their trunks spontaneously, and a few hours later they start responding to touch with contralateral coils. These behaviors are contemporaneous until spontaneous coils become infrequent by 30 h. Glutamatergic neurons are distributed throughout the embryonic spinal cord, but their contribution to these early motor behaviors in immature zebrafish is still unclear. We demonstrate that the kinetics of spontaneous coiling and touch-evoked responses show distinct developmental time courses and that the touch response is dependent on AMPA-type glutamate receptor activation. Transection experiments suggest that the circuits required for touch-evoked responses are confined to the spinal cord and that only the most rostral part of the spinal cord is sufficient for triggering the full response. This rostral sensory connection is presumably established via CoPA interneurons, as they project to the rostral spinal cord. Electrophysiological analysis demonstrates that these neurons receive short latency AMPA-type glutamatergic inputs in response to ipsilateral tactile stimuli. We conclude that touch responses in early embryonic zebrafish arise only after glutamatergic synapses connect sensory neurons and interneurons to the contralateral motor network via a rostral loop. This helps define an elementary circuit that is modified by the addition of sensory inputs, resulting in behavioral transformation. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source] Critical and sensitive periods for reversing the effects of mechanosensory deprivation on behavior, nervous system, and development in Caenorhabditis elegansDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2007Susan Rai Abstract In these studies the nematode Caenorhabditis elegans was used as a model to investigate ways to reverse the effects of mechanosensory deprivation on behavior and development. Rose et al. (J Neurosci 2005; 25:7159,7168) showed that worms reared in isolation responded significantly less to a mechanical tap stimulus, were significantly smaller, and expressed significantly lower levels of a postsynaptic glutamate receptor subunit on the command interneurons of the tap response circuit and a presynaptic vesicle marker in the tap sensory neurons compared with worms raised in groups. Here, brief mechanical stimulation at any time throughout development reversed the effects of isolation on the response to tap and on postsynaptic glutamate receptor expression on the command interneurons, suggesting there is no critical period for these measures. In contrast to the high level of plasticity in glutamate receptor subunit expression on the interneurons, low levels of stimulation only rescued vesicle expression in the tap sensory neurons early in development and progressively higher levels of stimulation were required as the worm developed, suggesting a sensitive period immediately after hatching, followed by a period of decreasing plasticity. Stimulation during the first three stages of larval development, but not later, rescued the effects of isolation on worm length, suggesting there is a critical period for this measure that ends in the third larval stage. These results indicate that different effects of early isolation required different amounts and/or timing of stimulation to be reversed. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a)DEVELOPMENTAL NEUROBIOLOGY, Issue 14 2006Daniela Pelz Abstract Understanding how odors are coded within an olfactory system requires knowledge about its input. This is constituted by the molecular receptive ranges (MRR) of olfactory sensory neurons that converge in the glomeruli of the olfactory bulb (vertebrates) or the antennal lobe (AL, insects). Aiming at a comprehensive characterization of MRRs in Drosophila melanogaster we measured odor-evoked calcium responses in olfactory sensory neurons that express the olfactory receptor Or22a. We used an automated stimulus application system to screen [Ca2+] responses to 104 odors both in the antenna (sensory transduction) and in the AL (neuronal transmission). At 10,2 (vol/vol) dilution, 39 odors elicited at least a half-maximal response. For these odorants we established dose-response relationships over their entire dynamic range. We tested 15 additional chemicals that are structurally related to the most efficient odors. Ethyl hexanoate and methyl hexanoate were the best stimuli, eliciting consistent responses at dilutions as low as 10,9. Two substances led to calcium decrease, suggesting that Or22a might be constitutively active, and that these substances might act as inverse agonists, reminiscent of G-protein coupled receptors. There was no difference between the antennal and the AL MRR. Furthermore we show that Or22a has a broad yet selective MRR, and must be functionally described both as a specialist and a generalist. Both these descriptions are ecologically relevant. Given that adult Drosophila use approximately 43 ORs, a complete description of all MRRs appears now in reach. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Regulation of FGF10 by POU transcription factor Brn3a in the developing trigeminal ganglionDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2006Eric Cox Abstract The POU-domain transcription factor Brn3a is expressed in specific neurons of the caudal CNS and peripheral sensory nervous system. The sensory neurons of mice lacking Brn3a exhibit marked defects in axon growth and extensive apoptosis in lategestation. Here we show that expression of thedevelopmental regulator FGF10 is approximately 35-fold increased in the developing trigeminal ganglia of Brn3a-null mice. In order to determine whether FGF10 regulates other changes in gene expression observed in Brn3a knock-out ganglia, we have used a sensory-specific enhancer to over-express FGF10 in transgenic mice. Microarray analysis of trigeminal ganglia from individual transgenic founders effectivelyexcludes the cell-autonomous activity of FGF10 as a mechanism for mediating the downstream effects of the loss of Brn3a, probably because developing sensory neurons lack the appropriate type of FGF receptor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Activity-dependent regulation of synaptic size in Drosophila neuromuscular junctionsDEVELOPMENTAL NEUROBIOLOGY, Issue 9 2006Hiroaki Nakayama Abstract One of the fundamental questions in neural development is how neurons form synapses of the appropriate size for the efficient transfer of information across neural circuits. Here we investigated the mechanisms that bring about the size correlation between synapses and postsynaptic cells during development of Drosophila neuromuscular junctions (NMJs). To do this, we made use of a unique system in which two neighboring muscles (M6 and M7) are innervated by the same neurons. In mature NMJs, synaptic size on M6 is normally larger than that on M7, in accordance with the difference in muscle volume; this ensures the same extent of contraction of both muscles, and we refer to this correspondence as "matching". We found that matching was apparent in larvae 8 h after hatching, but not in newly hatched larvae despite the difference in muscle volume. When sensory inputs were suppressed by the expression of tetanus toxin in sensory neurons, matching did not occur, although synapses were able to grow. Matching was also suppressed by the inhibition of motoneuronal activity. These results suggest that matching is induced by regulating the rate of synaptic growth on M6 and M7 in an experience- and activity-dependent manner. It seems most likely that retrograde signals from the postsynaptic to the presynaptic cell convey the information about muscle cell size. We thus examined whether a candidate of retrograde signaling in NMJs, BMP signaling, is involved inmatching. However, there was no effect on matching inBMP type II receptor gene mutants, suggesting thatother experience-driven mechanisms besides BMP signaling are involved in the proper development of synapses. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Retinoids and nonvertebrate chordate developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006Shigeki Fujiwara Abstract Retinoic acid (RA) is required for the differentiation and morphogenesis of chordate-specific features, such as the antero-posterior regionalization of the dorsal hollow nerve cord and neural crest cells. RA receptors (RARs) have been reported exclusively in chordates, suggesting that the acquisition of the RAR gene was important for chordate evolution. A scenario is presented here for the establishment of an RAR-mediated developmental regulatory system during the course of chordate evolution. In the common chordate ancestor, RAR came to control the spatial expression pattern of Hox genes in the ectoderm and endoderm along the antero-posterior axis. In these germ layers, RA was required for the differentiation of epidermal sensory neurons and the morphogenesis of pharyngeal gill slits, respectively. As the diffuse epidermal nerve net in the chordate ancestor became centralized to form the dorsal nerve cord, the epidermal Hox expression pattern was carried into the central nervous system. Because the Hox code here came to specify neuronal identity along the antero-posterior axis, RA became inextricably linked to the antero-posterior patterning of the chordate central nervous system. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 645,652, 2006 [source] Dose and age-dependent axonal responses of embryonic trigeminal neurons to localized NGF via p75NTR receptorDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2005P. Hande Özdinler Abstract Nerve growth factor (NGF) and related neurotrophins are target-derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF-dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax,/, mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA-positive, and TrkA,/, TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose- and age-dependent fashion, mediated by p75NTR signaling through TrkA expressing axons. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005 [source] |