Home About us Contact | |||
Sensory Areas (sensory + area)
Selected AbstractsSensory structures involved in prey detection on the labial palp of the ant-hunting beetle Siagona europaea Dejean 1826 (Coleoptera, Carabidae)ACTA ZOOLOGICA, Issue 3 2010Anita Giglio Abstract Giglio, A., Ferrero E.A., Perrotta, E., Talarico, F.F. and Zetto Brandmayr, T. 2010. Sensory structures involved in prey detection on the labial palp of the ant-hunting beetle Siagona europaea Dejean 1826 (Coleoptera, Carabidae). ,Acta Zoologica (Stockholm) 91: 328,334 The ultrastructure and distribution of sensilla on the labial palps of a myrmecophagous carabid beetle, Siagona europaea, were investigated using scanning and transmission electron microscopy techniques. Five types of sensilla were identified: three types of sensilla basiconica on the apical sensory area and two types, one sensillum trichodeum and one coeloconicum, on the external palp surface. On morphological grounds, the s. basiconica type 1 were considered as olfactory, the type 2 as gustatory, the type 3 and the s. trichodeum as mechanoreceptive, and the s. coeloconicum as a thermo/hygroreceptor. Their function is discussed in relation to prey detection and habitat adaptations. [source] Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortexHUMAN BRAIN MAPPING, Issue 4 2009Petra Ritter Abstract Similar to the posterior alpha rhythm, pericentral (Rolandic) EEG rhythms in the alpha and beta frequency range are referred to as "idle rhythms" indicating a "resting state" of the respective system. The precise function of these rhythms is not clear. We used simultaneous EEG-fMRI during a bimanual motor task to localize brain areas involved in Rolandic alpha and beta EEG rhythms. The identification of these rhythms in the MR environment was achieved by a blind source separation algorithm. Rhythm "strength", i.e. spectral power determined by wavelet analysis, inversely correlated most strongly with the fMRI-BOLD signal in the postcentral cortex for the Rolandic alpha (mu) rhythm and in the precentral cortex for the Rolandic beta rhythm. FMRI correlates of Rolandic alpha and beta rhythms were distinct from those associated with the posterior "classical" alpha rhythm, which correlated inversely with the BOLD signal in the occipital cortex. An inverse correlation with the BOLD signal in the respective sensory area seems to be a general feature of "idle rhythms". Hum Brain Mapp 2009. © 2008 Wiley-Liss, Inc. [source] Attention , oscillations and neuropharmacologyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009Gustavo Deco Abstract Attention is a rich psychological and neurobiological construct that influences almost all aspects of cognitive behaviour. It enables enhanced processing of behaviourally relevant stimuli at the expense of irrelevant stimuli. At the cellular level, rhythmic synchronization at local and long-range spatial scales complements the attention-induced firing rate changes of neurons. The former is hypothesized to enable efficient communication between neuronal ensembles tuned to spatial and featural aspects of the attended stimulus. Recent modelling studies suggest that the rhythmic synchronization in the gamma range may be mediated by a fine balance between N -methyl- d -aspartate and ,-amino-3-hydroxy-5-methylisoxazole-4-propionate postsynaptic currents, whereas other studies have highlighted the possible contribution of the neuromodulator acetylcholine. This review summarizes some recent modelling and experimental studies investigating mechanisms of attention in sensory areas and discusses possibilities of how glutamatergic and cholinergic systems could contribute to increased processing abilities at the cellular and network level during states of top-down attention. [source] Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Lars Jřrgen Rygh Abstract Long-term potentiation (LTP), a use dependent long-lasting modification of synaptic strength, was first discovered in the hippocampus and later shown to occur in sensory areas of the spinal cord. Here we demonstrate that spinal LTP requires the activation of a subset of superficial spinal dorsal horn neurons expressing the neurokinin-1 receptor (NK1-R) that have previously been shown to mediate certain forms of hyperalgesia. These neurons participate in local spinal sensory processing, but are also the origin of a spino-bulbo-spinal loop driving a 5-hydroxytryptamine 3 receptor (5HT3-R)- mediated descending facilitation of spinal pain processing. Using a saporin-substance P conjugate to produce site-specific neuronal ablation, we demonstrate that NK1-R expressing cells in the superficial dorsal horn are crucial for the generation of LTP-like changes in neuronal excitability in deep dorsal horn neurons and this is modulated by descending 5HT3-R-mediated facilitatory controls. Hippocampal LTP is associated with early expression of the immediate-early gene zif268 and knockout of the gene leads to deficits in long-term LTP and learning and memory. We found that spinal LTP is also correlated with increased neuronal expression of zif268 in the superficial dorsal horn and that zif268 antisense treatment resulted in deficits in the long-term maintenance of inflammatory hyperalgesia. Our results support the suggestion that the generation of LTP in dorsal horn neurons following peripheral injury may be one mechanism whereby acute pain can be transformed into a long-term pain state. [source] Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkeyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005Céline Cappe Abstract While multisensory integration is thought to occur in higher hierarchical cortical areas, recent studies in man and monkey have revealed plurisensory modulations of activity in areas previously thought to be unimodal. To determine the cortical network involved in multisensory interactions, we performed multiple injections of different retrograde tracers in unimodal auditory (core), somatosensory (1/3b) and visual (V2 and MT) cortical areas of the marmoset. We found three types of heteromodal connections linking unimodal sensory areas. Visuo-somatosensory projections were observed originating from visual areas [probably the ventral and dorsal fundus of the superior temporal area (FSTv and FSTd), and middle temporal crescent (MTc)] toward areas 1/3b. Somatosensory projections to the auditory cortex were present from S2 and the anterior bank of the lateral sulcus. Finally, a visuo-auditory projection arises from an area anterior to the superior temporal sulcus (STS) toward the auditory core. Injections in different sensory regions allow us to define the frontal convexity and the temporal opercular caudal cortex as putative polysensory areas. A quantitative analysis of the laminar distribution of projecting neurons showed that heteromodal connections could be either feedback or feedforward. Taken together, our results provide the anatomical pathway for multisensory integration at low levels of information processing in the primate and argue against a strict hierarchical model. [source] Neural connectivity in hand sensorimotor brain areas: An evaluation by evoked field morphologyHUMAN BRAIN MAPPING, Issue 2 2005Franca Tecchio Abstract The connectivity pattern of the neural network devoted to sensory processing depends on the timing of relay recruitment from receptors to cortical areas. The aim of the present work was to uncover and quantify the way the cortical relay recruitment is reflected in the shape of the brain-evoked responses. We recorded the magnetic somatosensory evoked fields (SEF) generated in 36 volunteers by separate bilateral electrical stimulation of median nerve, thumb, and little fingers. After defining an index that quantifies the shape similarity of two SEF traces, we studied the morphologic characteristics of the recorded SEFs within the 20-ms time window that followed the impulse arrival at the primary sensory cortex. Based on our similarity criterion, the shape of the SEFs obtained stimulating the median nerve was observed to be more similar to the one obtained from the thumb (same median nerve innervation) than to the one obtained from the little finger (ulnar nerve innervation). In addition, SEF shapes associated with different brain regions were more similar within an individual than between subjects. Because the SEF morphologic characteristics turned out to be quite diverse among subjects, we defined similarity levels that allowed us to identify three main classes of SEF shapes in normalcy. We show evidence that the morphology of the evoked response describes the anatomo-functional connectivity pattern in the primary sensory areas. Our findings suggest the possible existence of a thalamo-cortico-thalamic responsiveness loop related to the different classes. Hum Brain Mapp 24:99,108, 2005. © 2004 Wiley-Liss, Inc. [source] fMRI of the lumbar spinal cord during a lower limb motor taskMAGNETIC RESONANCE IN MEDICINE, Issue 2 2004J. Kornelsen Abstract This study applied spinal fMRI to the lumbar spinal cord during lower limb motor activity. During active ankle movement, activity was detected in the lumbar spinal cord motor areas and sensory areas bilaterally. During passive ankle movement, activity was detected in the motor and sensory areas in lower lumbar spinal cord segments and motor activity in higher lumbar spinal cord segments. Spinal fMRI detects patterns of activity consistent with known physiology and can be used to reliably assess activity in the lumbar spinal cord during lower limb motor stimulation. This study affirms spinal fMRI as an effective tool for assessing spinal cord function and increases its potential as a clinical tool. Magn Reson Med 52:411,414, 2004. © 2004 Wiley-Liss, Inc. [source] Localization of putative nitrergic neurons in peripheral chemosensory areas and the central nervous system of Aplysia californicaTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2006Leonid L. Moroz Abstract The distribution of putative nitric oxide synthase (NOS)-containing cells in the opisthobranch mollusc Aplysia californica was studied by using NADPH-diaphorase (NADPH-d) histochemistry in the CNS and peripheral organs. Chemosensory areas (the mouth area, rhinophores, and tentacles) express the most intense staining, primarily in the form of peripheral highly packed neuropil regions with a glomerular appearance as well as in epithelial sensory-like cells. These epithelial NADPH-d-reactive cells were small and had multiple apical ciliated processes exposed to the environment. NADPH-d processes were also found in the salivary glands, but there was no or very little staining in the buccal mass and foot musculature. In the CNS, most NADPH-d reactivity was associated with the neuropil of the cerebral ganglia, with the highest density of glomeruli-like NADPH-d-reactive neurites in the areas of the termini and around F and C clusters. A few NADPH-d-reactive neurons were also found in other central ganglia, including paired neurons in the buccal, pedal, and pleural ganglia and a few asymmetrical neurons in the abdominal ganglion. The distribution patterns of NADPH-d-reactive neurons did not overlap with other known neurotransmitter systems. The highly selective NADPH-d labeling revealed here suggests the presence of NOS in sensory areas both in the CNS and the peripheral organs of Aplysia and implies a role for NO as a modulator of chemosensory processing. J. Comp. Neurol. 495:10,20, 2006. © 2006 Wiley-Liss, Inc. [source] Input,output organization of jaw movement-related areas in monkey frontal cortexTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2005Nobuhiko Hatanaka Abstract The brain mechanisms underlying mastication are not fully understood. To address this issue, we analyzed the distribution patterns of cortico,striatal and cortico,brainstem axon terminals and the origin of thalamocortical and intracortical fibers by injecting anterograde/retrograde tracers into physiologically and morphologically defined jaw movement-related cortical areas. Four areas were identified in the macaque monkey: the primary and supplementary orofacial motor areas (MIoro and SMAoro) and the principal and deep parts of the cortical masticatory area (CMaAp and CMaAd), where intracortical microstimulation produced single twitch-like or rhythmic jaw movements, respectively. Tracer injections into these areas labeled terminals in the ipsilateral putamen in a topographic fashion (MIoro vs. SMAoro and CMaAp vs. CMaAd), in the lateral reticular formation and trigeminal sensory nuclei contralaterally (MIoro and CMaAp) or bilaterally (SMAoro) in a complex manner of segregation vs. overlap, and in the medial parabranchial and Kölliker-Fuse nuclei contralaterally (CMaAd). The MIoro and CMaAp received thalamic projections from the ventrolateral and ventroposterolateral nuclei, the SMAoro from the ventroanterior and ventrolateral nuclei, and the CMaAd from the ventroposteromedial nucleus. The MIoro, SMAoro, CMaAp, and CMaAd received intracortical projections from the ventral premotor cortex and primary somatosensory cortex, the ventral premotor cortex and rostral cingulate motor area, the ventral premotor cortex and area 7b, and various sensory areas. In addition, the MIoro and CMaAp received projections from the three other jaw movement-related areas. Our results suggest that the four jaw movement-related cortical areas may play important roles in the formation of distinctive masticatory patterns. J. Comp. Neurol. 492:401,425, 2005. © 2005 Wiley-Liss, Inc. [source] |