Home About us Contact | |||
Sensor Kinase (sensor + kinase)
Selected AbstractsBiochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosaFEBS JOURNAL, Issue 8 2005Ronja Tasler Phytochromes are photochromic biliproteins found in plants as well as in some cyanotrophic, photoautotrophic and heterotrophic bacteria. In many bacteria, their function is largely unknown. Here we describe the biochemical and spectroscopic characterization of recombinant bacterial phytochrome from the opportunistic pathogen Pseudomonas aeruginosa (PaBphP). The recombinant protein displays all the characteristic features of a bonafide phytochrome. In contrast with cyanobacteria and plants, the chromophore of this bacterial phytochrome is biliverdin IX,, which is produced by the heme oxygenase BphO in P. aeruginosa. This chromophore was shown to be covalently attached via its A-ring endo-vinyl group to a cysteine residue outside the defined bilin lyase domain of plant and cyanobacterial phytochromes. Site-directed mutagenesis identified Cys12 and His247 as being important for chromophore binding and photoreversibility, respectively. PaBphP is synthesized in the dark in the red-light-absorbing Pr form and immediately converted into a far-red-light-absorbing Pfr-enriched form. It shows the characteristic red/far-red-light-induced photoreversibility of phytochromes. A chromophore analog that lacks the C15/16 double bond was used to show that this photoreversibility is due to a 15Z/15E isomerization of the biliverdin chromophore. Autophosphorylation of PaBphP was demonstrated, confirming its role as a sensor kinase of a bacterial two-component signaling system. [source] Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulatorMOLECULAR MICROBIOLOGY, Issue 3 2006Marek Fol Summary Paired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M. tuberculosis from multiplying in macrophages, mice lungs and spleens, but did not affect its growth in broth. Intracellular trafficking analysis revealed that a vast majority of MtrA overproducing merodiploids were associated with lysosomal associated membrane protein (LAMP-1) positive vacuoles, indicating that intracellular growth attenuation is, in part, due to an impaired ability to block phagosome,lysosome fusion. A merodiploid strain producing elevated levels of phosphorylation-defective MtrA (MtrAD53N) was partially replicative in macrophages, but was attenuated in mice. Quantitative real-time PCR analyses revealed that expression of dnaA, an essential replication gene, was sharply upregulated during intramacrophage growth in the MtrA overproducer in a phosphorylation-dependent manner. Chromatin immunoprecipitation using anti-MtrA antibodies provided direct evidence that MtrA regulator binds to dnaA promoter in vivo indicating that dnaA promoter is a MtrA target. Simultaneous overexpression of mtrA regulator and its cognate mtrB kinase neither inhibited growth nor sharply increased the expression levels of dnaA in macrophages. We propose that proliferation of M. tuberculosis in vivo depends, in part, on the optimal ratio of phosphorylated to non-phosphorylated MtrA response regulator. [source] A novel sensor kinase,response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosaMOLECULAR MICROBIOLOGY, Issue 4 2004Michelle A. Laskowski Summary The type III secretion system (TTSS) of Pseudomonas aeruginosa is induced by contact with eukaryotic cells and by growth in low-calcium media. We have identified a protein, RtsM, that is necessary for expression of the TTSS genes in P. aeruginosa. RtsM possesses both histidine kinase and response regulator domains common to two-component signalling proteins, as well as a large predicted periplasmic domain and seven transmembrane domains. Deletion of rtsM resulted in a defect in production and secretion of the type III effectors. Northern blot analysis revealed that mRNAs encoding the effectors ExoT and ExoU are absent in the ,rtsM strain under TTSS-inducing conditions. Using transcriptional fusions, we demonstrated that RtsM is required for transcription of the operons encoding the TTSS effectors and apparatus in response to calcium limitation or to host cell contact. The operon encoding the TTSS regulator ExsA does not respond to calcium limitation, but the basal transcription rate of this operon was lower in ,rtsM than in the wild-type parent, PA103. The defect in TTSS effector production and secretion of ,rtsM could be complemented by overexpressing ExsA or Vfr, two transcriptional activators involved in TTSS regulation. ,rtsM was markedly less virulent than PA103 in a murine model of acute pneumonia, demonstrating that RtsM is required in vivo. We propose that RtsM is a sensor protein at the start of a signalling cascade that induces expression of the TTSS in response to environmental signals. [source] amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseusMOLECULAR MICROBIOLOGY, Issue 4 2003Haruka Yamazaki Summary In Streptomyces griseus, A-factor (2-isocapryloyl-3R -hydroxymethyl-,-butyrolactone) acts as a chemical signalling molecule that triggers morphological differentiation and secondary metabolism. A transcriptional activator, AdpA, in the A-factor regulatory cascade switches on a number of genes required for both processes, thus forming an AdpA regulon. amfR encoding a regulatory protein similar to response regulators of bacterial two-component regulatory systems and essential for aerial mycelium formation was found to be a member of the AdpA regulon. AdpA bound two sites at nucleotide positions approximately ,200 (site 1) and ,60 (site 2), with respect to the major transcriptional start point of amfR, and accelerated the transcription of amfR by assisting RNA polymerase in forming an open complex at an appropriate region including the transcriptional start point. Site 2 contributed more to the transcriptional activation of amfR by AdpA than site 1, although AdpA showed a much lower affinity to site 2 than to site 1. The amfR transcription enhanced by AdpA subsequently ceased at day 2 when aerial hyphae began to be formed in the wild-type strain, whereas in an adsA null mutant amfR was continuously transcribed even until day 3. This implied that amfR was repressed growth dependently by a gene product under the control of ,-AdsA. Transcription of the promoter upstream of amfT depended on amfR, which is consistent with the idea that AmfR serves as an activator for amfTSBA in the amf operon. The observations that the amfR gene contains a TTA codon, a potential target for bldA -mediated regulation, and a conserved Asp-54 residue, which might be phosphorylated by a sensor kinase, suggest that the amf operon is under transcriptional, translational and post-translational control systems. [source] Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosaMOLECULAR MICROBIOLOGY, Issue 1 2003Joseph B. McPhee Summary The two-component regulatory system PhoP-PhoQ of Pseudomonas aeruginosa regulates resistance to cationic antimicrobial peptides, polymyxin B and aminoglycosides in response to low Mg2+ conditions. We have identified a second two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides. This system responds to limiting Mg2+, and is affected by a phoQ, but not a phoP mutation. Inactivation of the pmrB sensor kinase and pmrA response regulator greatly decreased the expression of the operon encoding pmrA-pmrB while expression of the response regulator pmrA in trans resulted in increased activation suggesting that the pmrA-pmrB operon is autoregulated. Interposon mutants in pmrB, pmrA, or in an intergenic region upstream of pmrA-pmrB exhibited two to 16-fold increased susceptibility to polymyxin B and cationic antimicrobial peptides. The pmrA-pmrB operon was also found to be activated by a number of cationic peptides including polymyxins B and E, cattle indolicidin and synthetic variants as well as LL-37, a component of human innate immunity, whereas peptides with the lowest minimum inhibitory concentrations tended to be the weakest inducers. Additionally, we showed that the putative LPS modification operon, PA3552-PA3559, was also induced by cationic peptides, but its expression was only partially dependent on the PmrA-PmrB system. The discovery that the PmrA-PmrB two-component system regulates resistance to cationic peptides and that both it and the putative LPS modification system are induced by cationic antimicrobial peptides has major implications for the development of these antibiotics as a therapy for P. aeruginosa infections. [source] Topological analysis and role of the transmembrane domain in polar targeting of PilS, a Pseudomonas aeruginosa sensor kinaseMOLECULAR MICROBIOLOGY, Issue 4 2000Julie Ethier In Pseudomonas aeruginosa, synthesis of pilin, the major protein subunit of the pili, is regulated by a two-component signal transduction system in which PilS is the sensor kinase. PilS is an inner membrane protein found at the poles of the bacterial cell. It is composed of three domains: an N-terminal hydrophobic domain; a central cytoplasmic linker region; and the C-terminal transmitter region conserved among other sensor kinases. The signal that activates PilS and, consequently, pilin transcription remains unknown. The membrane topology of the hydrophobic domain was determined using the lacZ and phoA gene fusion approach. In this report, we describe a topological model for PilS in which the hydrophobic domain forms six transmembrane helices, whereas the N- and C-termini are cytoplasmic. This topology is very stable, and the cytoplasmic C-terminus cannot cross the inner membrane. We also show that two of the six transmembrane segments are sufficient for membrane anchoring and polar localization of PilS. [source] Expression, purification, crystallization and preliminary X-ray analysis of the DNA-binding domain of a Chlamydia trachomatis OmpR/PhoB-subfamily response regulator homolog, ChxRACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2009John M. Hickey Two-component signal transduction systems in bacteria are a primary mechanism for responding to environmental stimuli and adjusting gene expression accordingly. Generally in these systems a sensor kinase phosphorylates a response regulator that regulates transcription. Response regulators contain two domains: a receiver domain and an effector domain. The receiver domain is typically phosphorylated and as a result facilitates the DNA-binding and transcriptional activity of the effector domain. The OmpR/PhoB subfamily is the largest of the response-regulator subfamilies and is primarily defined by the winged helix,turn,helix DNA-binding motif within the effector domain. The overall structure of effector domains is highly conserved and contains three defined elements that are critical for transcriptional regulation: a DNA major-groove binding helix, a DNA minor-groove binding wing and a transcriptional activation loop. These functional elements are often diverse in sequence and conformation and reflect the functional differences observed between individual subfamily members. ChxR from Chlamydia trachomatis is an atypical OmpR/PhoB response regulator homolog that has transcriptional activity in the absence of phosphorylation. To facilitate the precise identification of the functional elements of the ChxR effector domain, this protein was cloned, expressed, purified and crystallized. Crystals were obtained from two separate mother liquors, producing two morphologically distinct crystals. The space group of both crystals was P43212 (or its enantiomorph P41212) with isomorphous unit-cell parameters; the crystals diffracted to 2.2,2.5,Å resolution. [source] Novel domains of the prokaryotic two-component signal transduction systemsFEMS MICROBIOLOGY LETTERS, Issue 1 2001Michael Y. Galperin Abstract The archetypal two-component signal transduction systems include a sensor histidine kinase and a response regulator, which consists of a receiver CheY-like domain and a DNA-binding domain. Sequence analysis of the sensor kinases and response regulators encoded in complete bacterial and archaeal genomes revealed complex domain architectures for many of them and allowed the identification of several novel conserved domains, such as PAS, GAF, HAMP, GGDEF, EAL, and HD-GYP. All of these domains are widely represented in bacteria, including 19 copies of the GGDEF domain and 17 copies of the EAL domain encoded in the Escherichia coli genome. In contrast, these novel signaling domains are much less abundant in bacterial parasites and in archaea, with none at all found in some archaeal species. This skewed phyletic distribution suggests that the newly discovered complexity of signal transduction systems emerged early in the evolution of bacteria, with subsequent massive loss in parasites and some horizontal dissemination among archaea. Only a few proteins containing these domains have been studied experimentally, and their exact biochemical functions remain obscure; they may include transformations of novel signal molecules, such as the recently identified cyclic diguanylate. Recent experimental data provide the first direct evidence of the participation of these domains in signal transduction pathways, including regulation of virulence genes and extracellular enzyme production in the human pathogens Bordetella pertussis and Borrelia burgdorferi and the plant pathogen Xanthomonas campestris. Gene-neighborhood analysis of these new domains suggests their participation in a variety of processes, from mercury and phage resistance to maintenance of virulence plasmids. It appears that the real picture of the complexity of phosphorelay signal transduction in prokaryotes is only beginning to unfold. [source] Evolution of signalling in the sporulation phosphorelayMOLECULAR MICROBIOLOGY, Issue 2 2002Keith Stephenson Summary Two-component and phosphorelay signal transduction systems are believed to function as environ-mental sensors that programme gene expression to the composition of the ecological niche in which a microbe normally resides. The question of how evolutionarily related bacteria that occupy different environments change their signal transduction pathways to adapt to such environments was asked of the sporulation phosphorelay of Bacillus subtilis, Bacillus halodurans, Bacillus anthracis and Bacillus stearothermophilus. Comparison of the primary amino acid sequence of phosphorelay proteins with the known structural and interactive properties of the B. subtilis proteins revealed that the amino acid residues of interaction surfaces between phosphorelay proteins and between a phosphorelay protein and DNA resist evolutionary change. The absolute conservation of interaction surfaces allowed the identification of sporulation sensor kinases in B. halodurans, B. anthracis and B. stearothermophilus. In these sensor kinases, the signal-sensing domains are vastly different in size and subdomain composition, with little apparent conservation between species, whereas the catalytic domains of these sensor kinases retain the high level of homology observed for the other phosphorelay proteins. Adaptation to new environments appears to result in rapid evolution of signalling domains to maximize environmental impact while maintaining identical protein,protein and protein,DNA contacts in the entire phosphorelay. In Clostridial genomes, only the Spo0A protein was found, suggesting that the anaerobic relatives of the Bacilli do not use a phosphorelay and phosphorylate Spo0A directly with sensor kinases. [source] How do membrane proteins sense water stress?MOLECULAR MICROBIOLOGY, Issue 4 2002Bert Poolman Summary Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress may be alike in all organisms. The primary response of bacteria to osmotic upshifts involves the activation of transporters, to effect the rapid accumulation of osmo-protectants, and sensor kinases, to increase the transport and/or biosynthetic capacity for these solutes. Upon osmotic downshift, the excess of cytoplasmic solutes is released via mechanosensitive channel proteins. A number of breakthroughs in the last one or two years have led to tremendous advances in our understanding of the molecular mechanisms of osmosensing in bacteria. The possible mechanisms of osmosensing, and the actual evidence for a particular mechanism, are presented for well studied, osmoregulated transport systems, sensor kinases and mechanosensitive channel proteins. The emerging picture is that intracellular ionic solutes (or ionic strength) serve as a signal for the activation of the upshift-activated transporters and sensor kinases. For at least one system, there is strong evidence that the signal is transduced to the protein complex via alterations in the protein,lipid interactions rather than direct sensing of ion concentration or ionic strength by the proteins. The osmotic downshift-activated mechanosensitive channels, on the other hand, sense tension in the membrane but other factors such as hydration state of the protein may affect the equilibrium between open and closed states of the proteins. [source] Topological analysis and role of the transmembrane domain in polar targeting of PilS, a Pseudomonas aeruginosa sensor kinaseMOLECULAR MICROBIOLOGY, Issue 4 2000Julie Ethier In Pseudomonas aeruginosa, synthesis of pilin, the major protein subunit of the pili, is regulated by a two-component signal transduction system in which PilS is the sensor kinase. PilS is an inner membrane protein found at the poles of the bacterial cell. It is composed of three domains: an N-terminal hydrophobic domain; a central cytoplasmic linker region; and the C-terminal transmitter region conserved among other sensor kinases. The signal that activates PilS and, consequently, pilin transcription remains unknown. The membrane topology of the hydrophobic domain was determined using the lacZ and phoA gene fusion approach. In this report, we describe a topological model for PilS in which the hydrophobic domain forms six transmembrane helices, whereas the N- and C-termini are cytoplasmic. This topology is very stable, and the cytoplasmic C-terminus cannot cross the inner membrane. We also show that two of the six transmembrane segments are sufficient for membrane anchoring and polar localization of PilS. [source] |