Home About us Contact | |||
Sensitizing Potential (sensitizing + potential)
Selected AbstractsSkin sensitizing properties of the ethanolamines mono-, di-, and triethanolamine.CONTACT DERMATITIS, Issue 5 2009Data analysis of a multicentre surveillance network (IVDK, review of the literature Numerous publications address the skin sensitizing potential of the short chain alkanolamines triethanolamine (TEA), diethanolamine (DEA), monoethanolamine (MEA), which are not skin sensitizing according to animal studies. Regarding TEA, we analysed patch test data of 85 098 patients who had been tested with TEA 2.5% petrolatum by Information Network of Departments of Dermatology (IVDK) to identify particular exposures possibly associated with an elevated risk of sensitization. Altogether, 323 patients (0.4%) tested positive. The profile of patch test reactions indicates a slightly irritant potential rather than a true allergic response in many cases. Although used widely, no exposure associated with an increased risk of TEA sensitization was identified. Therefore, the risk of sensitization to TEA seems to be very low. MEA and DEA were patch tested in a much more aimed fashion in 9602 and 8791 patients, respectively when prevalence of contact allergy was 3.8% and 1.8%. MEA is the prominent allergen in metalworkers with exposure to water-based metalworking fluids (wbMWFs); DEA is probably used in cutting fluids less frequently nowadays. Chronic damage to the skin barrier resulting from wbMWF, the alkalinity of ethanolamines (increasing from TEA to MEA), and other cofactors may contribute to a notable sensitization risk. [source] Advantage of using CBA/N strain mice in a non-radioisotopic modification of the local lymph node assayJOURNAL OF APPLIED TOXICOLOGY, Issue 1 2006Masahiro Takeyoshi Abstract The murine local lymph node assay (LLNA) is currently recognized as a stand-alone test method for determining the skin sensitizing potential of chemicals. It has been incorporated into the official test guidelines published by some authorities, including the OECD. To avoid the use of radioisotopes, efforts have been made recently to develop non-radioisotopic modifications of the LLNA. A non-radioisotopic modification of the LLNA was developed previously using 5-bromo-2,-deoxyuridine (BrdU) incorporation (non-RI LLNA). However, the non-RI LLNA was found to be somewhat less sensitive than the standard assay. This study reports the advantage of using mice of the CBA/N strain in the non-RI LLNA to improve the sensitivity of this method. The non-RI LLNA was performed using CBA/JN and CBA/N mice exposed to one of four confirmed skin sensitizers, 2,4-dinitrochlorobenzene (DNCB), eugenol (EG), isoeugenol (IEG) or , -hexylcinnamic aldehyde (HCA), and to one non-sensitizer, propylene glycol (PG). The EC3 values for DNCB, IEG, EG, HCA and PG were calculated to be 0.1%, 9.6%, 40.6%, 45.5% and >50% in CBA/JN mice and 0.08%, 1.9%, 10.7%, 20.3% and >50% in CBA/N mice, respectively. The EC3 values for DNCB, IEG, EG, HCA and PG in the standard LLNA using CBA/Ca mice and radioisotopes were reported elsewhere as being 0.08%, 1.3%, 13.0%, 8.0% and >50%, respectively. The EC3 values derived from the CBA/N mice in the non-RI LLNA were nearly equivalent to the EC3 values obtained using the standard radioisotopic LLNA with CBA/Ca mice. These data suggest that the use of CBA/N mice may provide a realistic opportunity to develop a version of the LLNA that does not have a requirement for the use of radioisotopes, but which nevertheless has sensitivity approaching, or comparable to, the standard method. Copyright © 2005 John Wiley & Sons, Ltd. [source] Induced changes in total serum IgE concentration in the Brown Norway rat: potential for identification of chemical respiratory allergensJOURNAL OF APPLIED TOXICOLOGY, Issue 1 2002E. V. Warbrick Abstract A variety of chemicals can cause sensitization of the respiratory tract and occupational asthma that may be associated with IgE antibody production. Topical exposure to chemical respiratory allergens such as trimellitic anhydride (TMA) has been shown previously to induce increases in the total serum concentration of IgE in BALB/c strain mice. Contact allergens such as 2,4-dinitrochlorobenzene (DNCB), which apparently lack respiratory sensitizing potential, fail to provoke similar changes. However, it became apparent with time that there was some inter-animal variation in constitutive and inducible IgE levels. We have now examined the influence of topical exposure to TMA and DNCB on serum IgE levels in the Brown Norway (BN) rat. Such animals can be bled serially and thus it is possible to perform longitudinal analyses of changes in serum IgE concentration. The kinetics of IgE responses therefore can be followed on an individual animal basis, allowing discrimination between transient and sustained increases in serum IgE concentration. Rats (n = 5) were exposed on shaved flanks to 50% TMA, to 1% DNCB (concentrations that elicit comparable immune activation with respect to draining lymph node cellularity and proliferation) or to vehicle alone. Total IgE was measured by enzyme-linked immunosorbent assay in serum samples taken prior to and 14,42 days following initial exposure. Those animals having high pre-existing IgE levels (>1.0 µg ml,1) were excluded from subsequent analyses. The levels of serum IgE in the majority of rats exposed to DNCB or vehicle alone remained relatively stable throughout the duration of all the experiments conducted, although some animals displayed transient increases in serum IgE. Only TMA treatment was associated with a significant and sustained increase in the level of serum IgE in the majority of experiments. The elevated concentrations of IgE induced by topical exposure to TMA are persistent, the results reported here demonstrating that induced changes in IgE are maximal or near maximal at approximately 35 days, with a significant increase in IgE demonstrable for at least 42 days following the initiation of exposure. Interestingly, although TMA and DNCB at the test concentrations used were found to be of comparable overall immunogenicity with regard to lymph node activation and the induction of lymph node cell proliferation, there were apparent differences in humoral immune responses. Thus, not only did exposure to TMA stimulate increases in total serum IgE concentration and the production of specific IgE antibody, but also a more vigorous IgG antibody response was provoked by TMA compared with DNCB. These data suggest that the measurement of induced changes in serum IgE concentration in the BN strain of rat is able to differentiate between different classes of chemical allergen. Given the inter-animal variation in IgE production, it would be prudent to incorporate a concurrent assessment of responses induced by treatment with TMA as a positive control against which to assess the activity of other test materials. Copyright © 2002 John Wiley & Sons, Ltd. [source] Gene expression studies in cultured dendritic cells: new indicators for the discrimination of skin sensitizers and irritants in vitroCLINICAL & EXPERIMENTAL ALLERGY, Issue 6 2009S. Szameit Summary Background The replacement of animal tests for the detection of the sensitizing potential of chemicals is of great importance due to current legislation. One promising approach for the development of an in vitro assay is the exposure of immature dendritic cells (iDCs) to contact sensitizers and irritants, followed by an analysis of the maturation status of the cells. Objective The aim of this study was to further investigate the performance of our previously developed targeted microarray, the immune toxicity chip. In addition, we aimed to identify new marker genes for the discrimination of allergens and irritants using whole-genome microarrays. Methods Monocyte-derived iDCs were exposed to contact sensitizers and irritants in concentrations resulting in 10,20% cytotoxicity, as determined by dose,response curves. Changes in gene expression were analysed using the immune toxicity chip and a commercially available whole-genome microarray. Results Using the immune toxicity chip, we could identify a panel of marker genes suitable to discriminate strong allergens and irritants. Analysis with the whole-genome array revealed additional genes that are differentially expressed after allergen exposure, but not after irritant exposure. Hierarchical clustering of these genes showed distinct groups representing the different chemicals. Conclusion Here we show that our test system based on an immune-specific microarray is suitable for the discrimination of strong allergens and irritants. Genes detected as differentially expressed with the whole-genome array and previously not connected to the maturation process of DCs might be suitable candidate genes for the identification of weaker sensitizers. [source] |