Home About us Contact | |||
Sensing Ability (sensing + ability)
Selected AbstractsAnomalous behavior of the second and third harmonics generated by femtosecond Cr:forsterite laser pulses in SiC,polymer nanocomposite materials as functions of the SiC nanopowder contentJOURNAL OF RAMAN SPECTROSCOPY, Issue 12 2003S. O. Konorov Abstract Femtosecond pulses of 1.25 µm Cr:forsterite laser radiation were used to study second- and third-harmonic generation in silicon carbide nanopowders embedded in a poly(methyl methacrylate) (PMMA) film. Harmonic generation processes extend the analytical and sensing abilities of light-scattering techniques, including Raman spectroscopy, offering a convenient and efficient approach to the analysis of nanocomposite materials where nanoparticles tend to agglomerate, masking informative features in Raman spectra. The second- and third-harmonic yields are shown to display an anomalous, counterintuitive behavior as functions of the SiC nanopowder content in a polymer film. Whereas harmonic generation in polymer films with a high content of SiC nanocrystals is quenched by the absorption of agglomerating nanoparticles, the influence of absorption is less detrimental in nanocomposite films with a lower SiC content, leading to the growth of the second- and third-harmonic yields. Nanocomposite films with a lower SiC content are also characterized by a higher breakdown threshold, allowing pump pulses with higher fluences to be applied for more efficient harmonic generation. Copyright © 2003 John Wiley & Sons, Ltd. [source] Volatile Organic Compound Sensing by Quartz Crystal Microbalances Coated with Nanostructured Macromolecular Metal ComplexesCHEMISTRY - AN ASIAN JOURNAL, Issue 4 2010M. Kimura Prof. Abstract We report the construction of a molecular recognition layer composed of polyelectrolyte brushes and metal complexes on the surface of a quartz crystal microbalance (QCM) and the sensing abilities for various volatile organic compounds (VOCs). Atom-transfer radical polymerization of 2-(dimethylamino)ethyl acrylate from an initiator-terminated self-assembled monolayer yielded polyelectrolyte brushes on the surface of a weight-detectable quartz crystal microbalance. One end of a poly[(2-dimethylamino)ethyl methacrylate] brush was covalently attached onto the surface of a sensor. We found that metallophthalocyanines with four bulky pentaphenylbenzene substituents could adsorb volatile organic compounds selectively into their cavities. Macromolecular metal complexes were prepared by immersing polymer-brush-modified QCMs into an aqueous solution of sterically protected cobalt phthalocyanine. Anionic cobalt phthalocyanine was trapped in the polymer brushes and acted as a molecular receptor for the sensing of VOC molecules. [source] Connection of transport and sensing by UhpC, the sensor for external glucose-6-phosphate in Escherichia coliFEBS JOURNAL, Issue 7 2003Christian Schwöppe UhpC is a membrane-bound sensor protein in Escherichia coli required for recognizing external glucose-6-phosphate (Glc6P) and induction of the transport protein UhpT. Recently, it was shown that UhpC is also able to transport Glc6P. In this study we investigated whether these transport and sensing activities are obligatorily coupled in UhpC. We expressed a His-UhpC protein in a UhpC-deficient E. coli strain and verified that this construct does not alter the basic biochemical properties of the Glc6P sensor system. The effects of arginine replacements, mutations of the central loop, and introduction of a salt bridge in UhpC on transport and sensing were compared. The exchanges R46C, R266C and R149C moderately affected transport by UhpC but strongly decreased the sensing ability. This suggested that the affinity for Glc6P as a transported substrate is uncoupled in UhpC from its affinity for Glc6P as an inducer. Four of the 11 arginine mutants showed a constitutive phenotype but had near wild-type transport activity suggesting that Glc6P can be transported by a molecule locked in the inducing conformation. Introduction of an intrahelical salt bridge increased the transport activity of UhpC but abolished sensing. Three conserved residues from the central loop were mutated and although none of these showed transport, one exhibited increased affinity for sensing. Taken together, these data show that transport by UhpC is not required for sensing, that conserved arginine residues are important for sensing and not for transport, and that residues located in the central hydrophilic loop are critical for transport and for sensing. [source] Protein-Modified Porous Silicon NanostructuresADVANCED MATERIALS, Issue 8 2008Luca De Stefano Biological passivation of porous silicon (PSi)-based optical devices is demonstrated. Infiltration by small amphiphilic fungal proteins called HFBs changes the wettability of the PSi surface (see figure) and protects the sponge-like structure against dissolution by basic solutions. This protein membrane leaves the sensing ability of an optical transducer unchanged, adding chemical stability that can be the key in biomolecular experiments. [source] Mesoporous Hybrid Materials Containing Nanoscopic "Binding Pockets" for Colorimetric Anion Signaling in Water by using Displacement AssaysCHEMISTRY - A EUROPEAN JOURNAL, Issue 36 2009María Comes Abstract Mesoporous solids functionalized with anion-binding groups have proved to be suitable anion hosts and have been used in selective colorimetric displacement assays. The material UVM-7, a mesoporous MCM41-type support characterized by the presence of nanometric mesoporous particle conglomerates, was selected as inorganic scaffolding. Reaction of the template-free UVM-7 solid with 3-aminopropyltriethoxysilane (1) yielded solid S1, from which the derivatives S2 and S3 were obtained by reaction with 2-methylthio-2-imidazoline hydroiodide (2) and butyl isocyanate (3), respectively. Solids S4 and S5 were prepared by reaction of the starting mesoporous UVM-7 scaffolding with N -methyl- N,-propyltrimethoxysilyl imidazolium chloride (4) and with 3-(trimethoxysilyl)propyl- N,N,N -trimethylammonium chloride (5), respectively. The solids synthesized contain mesoporous binding pockets that can interact with anions through electrostatic attractive forces (S1, S2, S4, S5) and hydrogen-bonding interactions (S1, S2, S3, S4). These functionalized solids were loaded with a dye (d) capable of interacting coordinatively with the anchored binding sites, in our case 5-carboxyfluorescein, to yield the hybrid materials S1d, S2d, S3d, S4d and S5d. These dye-containing solids are the signaling reporters. Their sensing ability towards a family of carboxylates, namely acetate, citrate, lactate, succinate, oxalate, tartrate, malate, mandelate, glutamate and certain nucleotides, has been studied in pure water at pH,7.5 (Hepes, 0.01,mol,dm,3). In the sensing protocol, a particular analyte may be bonded preferentially by the nanoscopic functionalized pocket, leading to delivery of the dye to the solution and resulting in colorimetric detection of the guest. The response to a given anion depends on the characteristics of the binding pockets and the specific interaction of the anion with the binding groups in the mesopores. We believe that the possibility of using a wide variety of mesoporous supports that can easily be functionalized with anion-binding sites, combined with suitable dyes as indicators, make this approach significant for opening new perspectives in the design of chromogenic assays for anion detection in pure water. [source] |