Selective Enrichment (selective + enrichment)

Distribution by Scientific Domains

Selected Abstracts

Facile Synthesis of Copper(II)Immobilized on Magnetic Mesoporous Silica Microspheres for Selective Enrichment of Peptides for Mass Spectrometry Analysis,

Shasha Liu
Fesselnde Poren: Kupferionen wurden in den senkrechten Kanälen einer mesoporösen SiO2 -Schale um einen Fe3O4 -Kern immobilisiert. Dank der gut zugänglichen Mesoporen, der großen Porenoberfläche und der großen Menge an Cu2+ -Ionen in den Kanälen gelingt der selektive Einfang von hydrophoben und hydrophilen Peptiden aus komplexen biologischen Proben mit anschließender magnetischer Abtrennung und MS-Analyse (siehe Bild). [source]

Self-Assembled TiO2 Nanocrystal Clusters for Selective Enrichment of Intact Phosphorylated Proteins,

Zhenda Lu
Mesoporöse Fallen: Die Titelcluster wurden durch Selbstorganisation von Nanokristallen in Emulsionströpfchen und anschließende schützende Calcinierung hergestellt. Wegen der spezifischen Affinität des Metalloxids und des Größenausschlussmechanismus aufgrund der mesoporösen Struktur eignen sich diese Cluster für die effiziente Anreicherung intakter phosphorylierter Proteine aus komplexen biologischen Proben (siehe Bild). [source]

Selective enrichment of trace copper(II) from biological and natural water samples by SPE using ion-imprinted polymer

Yunhui Zhai
Abstract A novel Cu(II)-imprinted polymer sorbent was prepared by an ion-imprinted polymer (IIP) technique using (2Z)- N,N,-bis(2-aminoethylic)but-2-enediamide as the functional monomer and pentaerythritol triacylate as a crosslinker. IR, XPS, and elemental analysis techniques were used to confirm the obtained product. Subsequently, when this polymer was used as sorbent in SPE, it exhibited excellent selectivity for template ion from an aqueous solution. Quantitative extraction of Cu(II) was achieved in the pH range of 4,7. The time needed to extract each sample was less than 30 min by the batch method. The distribution ratio (D) values of IIP for Cu(II) were greatly larger than that for other ions. At optimal pH value, the maximum extraction capacity of IIP and nonimprinted polymer (NIP) was found to be 29.8 and 7.0 mg/g, respectively. The adsorption behavior of Cu(II) on the sorbents could be described by Langmuir adsorption isotherm equation. The feasible flow rate of Cu(II)-containing solution for quantitative extraction onto the column packed with IIP was 1,4 mL/min, whereas for elution it was less than 1 mL/min. The developed method was successfully applied to the separation and enrichment of trace Cu(II) in biological and natural water samples with satisfactory results. [source]

Selective enrichment of Ser-/Thr-phosphorylated peptides in the presence of Ser-/Thr-glycosylated peptides

Alex J. Poot
Abstract Modification through ,-elimination has proven to be a reliable first step in the approach for enrichment of serine/threonine-phopshorylated (Ser-/Thr) peptides. However, under harsh basic conditions, Ser-/Thr-glycosylated peptides are susceptible to ,-elimination as well. Therefore, we have optimized these conditions to achieve a ,-elimination that is highly selective for phosphorylated peptides. This is the first report of selective ,-elimination and enrichment of phosphorylated peptides in the presence of glycosylated peptides. [source]

Accumulation and distribution of polychlorinated dibenzo- p -dioxin, dibenzofuran, and polychlorinated biphenyl congeners in atlantic salmon (Salmo salar)

Pirjo Isosaari
Abstract Adult Atlantic salmon (Salmo salar) were fed on four diets containing polychlorinated dibenzo- p -dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) for 30 weeks. Lipid-normalized concentrations showed that all congeners were equally partitioned between whole-fish and fillet samples. Skinned fillet accumulated approximately 30% of the total PCDD/F and PCB content in fish. Accumulation efficiencies in whole fish were 43% for 2,3,7,8-chlorinated dibenzo- p -dioxins and dibenzofurans, 83% for dioxin-like PCBs, and 78% for other PCB congeners. Among PCDD/Fs, tetra- and pentachlorinated congeners were preferentially accumulated in salmon, whereas hepta- and octachlorinated dibenzo- p -dioxins were excreted in the feces. Substitution patterns that were associated with a preferential accumulation of PCBs in salmon included non- ortho substitution and tetrachlorination. Accumulation efficiencies and lipid-normalized biomagnification factors (BMFs) were not influenced by the PCDD/F and PCB concentrations of the diets. Biomagnification (BMF > 1) of tetra- and pentachlorinated dibenzo- p -dioxins and dibenzofurans and of all the PCBs was observed. Differences in the behavior of PCDD/F and PCB congeners resulted in a selective enrichment of the most toxic congeners in salmon. [source]

IgG2 containing IgM,IgG immune complexes predominate in normal human plasma, but not in plasma of patients with warm autoimmune haemolytic anaemia

Dorothea Stahl
Abstract:, The different physicochemical and sterical properties of IgG subclasses may favour a selective enrichment of defined IgG subclasses in IgM,IgG immune complexes (IC) of human plasma under physiological conditions. Such enrichment of IgG subclasses in IgM,IgG IC of plasma may differ from the normal IgG subclass distribution in plasma itself, and contribute to the physiological functions of IgM,IgG IC. Systematic studies on the IgG subclass distribution in IgM,IgG IC in humans are lacking. Using specific analytical techniques to characterise IgM,IgG IC in human plasma (i.e. fast protein liquid chromatography, enzyme-linked immunosorbent assay, affinity biosensor technology), and taking warm autoimmune haemolytic anaemia (WAIHA) of humans as a disease model, we here demonstrate that: (i) IgG2 is the predominant IgG subclass in IgM,IgG IC under physiological conditions, (ii) the predominance of IgG2 within IgM,IgG IC may get lost in polyclonal IgG-mediated autoimmune disease and (iii) the IgG subclass distribution in IgM,IgG IC influences the interaction between IC and blood cells involved in antigen presentation. The data presented here therefore extend the physiological function of IgG2, which is the protective immune response towards carbohydrate antigens in bacterial infections, and suggest IgG2-dependent regulation of immune responses to self-immunoglobulin in humans. The disturbed IgG subclass distribution in IgM,IgG IC of patients with WAIHA might influence activity of self-reactive B cells involved in the pathophysiology of the disease. [source]

Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review

Uta Gasanov
Abstract Listeria monocytogenes is an important food-borne pathogen and is widely tested for in food, environmental and clinical samples. Identification traditionally involved culture methods based on selective enrichment and plating followed by the characterization of Listeria spp. based on colony morphology, sugar fermentation and haemolytic properties. These methods are the gold standard; but they are lengthy and may not be suitable for testing of foods with short shelf lives. As a result more rapid tests were developed based on antibodies (ELISA) or molecular techniques (PCR or DNA hybridization). While these tests possess equal sensitivity, they are rapid and allow testing to be completed within 48 h. More recently, molecular methods were developed that target RNA rather than DNA, such as RT-PCR, real time PCR or nucleic acid based sequence amplification (NASBA). These tests not only provide a measure of cell viability but they can also be used for quantitative analysis. In addition, a variety of tests are available for sub-species characterization, which are particularly useful in epidemiological investigations. Early typing methods differentiated isolates based on phenotypic markers, such as multilocus enzyme electrophoresis, phage typing and serotyping. These phenotypic typing methods are being replaced by molecular tests, which reflect genetic relationships between isolates and are more accurate. These new methods are currently mainly used in research but their considerable potential for routine testing in the future cannot be overlooked. [source]

Use of fluorinated maleimide and telechelic bismaleimide for original hydrophobic and oleophobic polymerized networks

Aurélien Soules
Abstract The syntheses of original fluorinated maleimide and telechelic bismaleimide bearing C6F13 and C6F12 groups, respectively, and their use as reactive additives in photopolymerizable formulations of telechelic poly(propylene glycol) bismaleimide (PPGBMI) are presented. Fluorinated maleimide was synthetized in five steps in 63% overall yield from C6F13C2H4I precursor, whereas the fluorinated bismaleimide was prepared in six steps in 14% overall yield from IC6F12I. These latter led to fluorinated azido and diazido intermediates that were reduced into the fluorinated amine and diamines in two steps. The condensation of amine and diamine onto maleic anhydride offered an amic acid and a diamic acid, which were subsequently cyclized into fluorinated maleimide and bismaleimide. Formulations of telechelic PPGBMI containing a low concentration of these fluorinated maleimide and bismaleimide were UV cured and the surface properties of the resulting films were investigated. A deep modification of the surface properties was noted when the monomaleimide was used. In all the cases, a selective enrichment of the fluorinated monomer at the film surface was observed. The dependence of the surface properties on the fluorinated maleimide and bismaleimide concentrations were also studied, and showed an asymptotic behavior of the contact angle with only 1.5 wt % of fluorinated maleimide additive, whatever the conditions. This monomaleimide led to better hydrophobic and oleophobic properties of the resulting material than that containing the telechelic one. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3214,3228, 2008 [source]

Biological treatment of textile dye Acid violet-17 by bacterial consortium in an up-flow immobilized cell bioreactor

D.K. Sharma
Abstract Aims:, To develop a cost effective and efficient biological treatment process for small scale textile processing industries (TPI) releasing untreated effluents containing intense coloured Acid violet-17 (AV-17), a triphenyl methane (TPM) group textile dye. Methods and Results:, The samples collected from effluent disposal sites of TPI were used for selective enrichment of microbial populations capable of degrading/decolourizing AV-17. A consortium of five bacterial isolates was used to develop an up-flow immobilized cell bioreactor for treatment of feed containing AV-17. The bioreactor, operating at a flow rate of 6 ml h,1, resulted in 91% decolourization of 30 mg AV-17/l with 94·3 and 95·7% removal of biochemical oxygen demand and chemical oxygen demand of the feed. Comparison of the input and output of the bioreactor by UV-visible, thin layer chromatography and 1H-nuclear magnetic resonance spectroscopy indicates conversion of the parent dye into unrelated metabolic intermediates. Significance:, These results will form a basis for developing ,on-site' treatment system for TPI effluents to achieve decolourization and degradation of residual dyes. [source]

On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis

Jia Tang
Abstract In this study, an on-plate-selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless-steel plate, then modified with 4-mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI-MS simply by deposition of 2,5-dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on-plate strategy promising for online enrichment of glycopeptides, which could be applied in high-throughput proteome research. [source]

Highly efficient and selective enrichment of peptide subsets combining fluorous chemistry with reversed-phase chromatography

Wantao Ying
The selective capture of target peptides poses a great challenge to modern chemists and biologists, especially when enriching them from proteome samples possessing extremes in concentration dynamic range and sequence diversity. While approaches based on traditional techniques such as biotin-avidin pairing offer versatile tools to design strategies for selective enrichment, problems are still encountered due to sample loss or poor selectivity of enrichment. Here we show that the recently introduced fluorous chemistry approach has attractive properties as an alternative method for selective enrichment. Through appending a perfluorine group to the target peptide, it is possible to dramatically increase the peptide's hydrophobicity and thus enable facile separation of labeled from non-labeled peptides. Use of reversed-phase chromatography allowed for improved peptide recovery in comparison with results obtained using the formerly reported fluorous bonded phase methods. Furthermore, this approach also allowed for on-line separation and identification of both labeled and unlabeled peptides in a single experiment. The net result is an increase in the confidence of protein identification by tandem mass spectrometry (MS2) as all peptides and subsequent information are retained. Successful off-line and on-line enrichment of cysteine-containing peptides was obtained, and high quality MS2 spectra were obtained by tandem mass spectrometry due to the stability of the tag, allowing for facile identification via standard database searching. We believe that this strategy holds great promise for selective enrichment and identification of low abundance target proteins or peptides. Copyright © 2009 John Wiley & Sons, Ltd. [source]