Selection Operating (selection + operating)

Distribution by Scientific Domains


Selected Abstracts


THE RELATIONSHIP BETWEEN SEXUAL SIZE DIMORPHISM AND HABITAT USE IN GREATER ANTILLEAN ANOLIS LIZARDS

EVOLUTION, Issue 1 2000
Marguerite A. Butler
Abstract., Sexual size dimorphism (SSD) is the evolutionary result of selection operating differently on the body sizes of males and females. Anolis lizard species of the Greater Antilles have been classified into ecomorph classes, largely on the basis of their structural habitat (perch height and diameter). We show that the major ecomorph classes differ in degree of SSD. At least two SSD classes are supported: high SSD (trunk-crown, trunk-ground) and low SSD (trunk, crown-giant, grass-bush, twig). Differences cannot be attributed to an allometric increase of SSD with body size or to a phylogenetic effect. A third explanation, that selective pressures on male and/or female body size vary among habitat types, is examined by evaluating expectations from the major relevant kinds of selective pressures. Although no one kind of selective pressure produces expectations consistent with all of the information, competition with respect to structural habitat and sexual selection pressures are more likely possibilities than competition with respect to prey size or optimal feeding pressures. The existence of habitat-specific sexual dimorphism suggests that adaptation of Anolis species to their environment is more complex than previously appreciated. [source]


The continuity of microevolution and macroevolution

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2002
Andrew M. Simons
Abstract A persistent debate in evolutionary biology is one over the continuity of microevolution and macroevolution , whether macroevolutionary trends are governed by the principles of microevolution. The opposition of evolutionary trends over different time scales is taken as evidence that selection is uncoupled over these scales. I argue that the paradox inferred by trend opposition is eliminated by a hierarchical application of the ,geometric-mean fitness' principle, a principle that has been invoked only within the limited context of microevolution in response to environmental variance. This principle implies the elimination of well adapted genotypes , even those with the highest arithmetic mean fitness over a shorter time scale. Contingent on premises concerning the temporal structure of environmental variance, selectivity of extinction, and clade-level heritability, the evolutionary outcome of major environmental change may be viewed as identical in principle to the outcome of minor environmental fluctuations over the short-term. Trend reversals are thus recognized as a fundamental property of selection operating at any phylogenetic level that occur in response to event severities of any magnitude over all time scales. This ,bet-hedging' perspective differs from others in that a specified, single hierarchical selective process is proposed to explain observed hierarchical patterns of extinction. [source]


The evolution of reproductive and genomic diversity in ray-finned fishes: insights from phylogeny and comparative analysis

JOURNAL OF FISH BIOLOGY, Issue 1 2006
J. E. Mank
Collectively, ray-finned fishes (Actinopterygii) display far more diversity in many reproductive and genomic features than any other major vertebrate group. Recent large-scale comparative phylogenetic analyses have begun to reveal the evolutionary patterns and putative causes for much of this diversity. Several such recent studies have offered clues to how different reproductive syndromes evolved in these fishes, as well as possible physiological and genomic triggers. In many cases, repeated independent origins of complex reproductive strategies have been uncovered, probably reflecting convergent selection operating on common suites of underlying genes and hormonal controls. For example, phylogenetic analyses have uncovered multiple origins and predominant transitional pathways in the evolution of alternative male reproductive tactics, modes of parental care and mechanisms of sex determination. They have also shown that sexual selection in these fishes is repeatedly associated with particular reproductive strategies. Collectively, studies on reproductive and genomic diversity across the Actinopterygii illustrate both the strengths and the limitations of comparative phylogenetic approaches on large taxonomic scales. [source]


Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations

MOLECULAR ECOLOGY, Issue 1 2009
MATTHEW K. OLIVER
Abstract Patterns of spatio-temporal genetic variation at a class II major histocompatibility complex (MHC) locus and multiple microsatellite loci were analysed within and between three water vole metapopulations in Scotland, UK. Comparisons of MHC and microsatellite spatial genetic differentiation, based on standardised tests between two demographically asynchronous zones within a metapopulation, suggested that spatial MHC variation was affected by balancing selection, directional selection and random genetic drift, but that the relative effects of these microevolutionary forces vary temporally. At the metapopulation level, between-year differentiation for MHC loci was significantly correlated with that of microsatellites, signifying that neutral factors such as migration and drift were primarily responsible for overall temporal genetic change at the metapopulation scale. Between metapopulations, patterns of genetic differentiation implied that, at large spatial scales, MHC variation was primarily affected by directional selection and drift. Levels of MHC heterozygosity in excess of Hardy,Weinberg expectations were consistent with overdominant balancing selection operating on MHC variation within metapopulations. However, this effect was not constant among all samples, indicating temporal variation in the strength of selection relative to other factors. The results highlight the benefit of contrasting variation at MHC with neutral markers to separate the effects of stochastic and deterministic microevolutionary forces, and add to a growing body of evidence showing that the mode and relative strength of selection acting on MHC diversity varies both spatially and temporally. [source]